D-A102 361

WNCI ASSTFTFD
=4

UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO~~ETC F/6G 9/2
DESIGN SPECIFICATION VALIDATION. (V)

JUN B1 R M BLAZER F30602-79-C-00'62
ADC=TR=81=1

v
RADC-TR-81-102
Final Technical Report
June 1981

1

<y i
BRY

DESIGN SPECIFICATION VALIDATION

o
¢ University of Southern California
r=i >, Bl
+ Robert M. Blazer 4
(o]
<C

ELECTE
s AUG O 31981 7]

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Alr Force Base, New York 1344

\

LOTG FIE Cofy

81 8 0] nkA .

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). ‘At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-102 has been reviewed and is approved for publication.

/
. /
APPROVED: hece 7 -)é(ﬂ""'

ROCCO F. IUORNO
Project Engineer

- 2
APPROVED: (//(/é:ﬂ) /5 D B NL L s~
ALAN R. BARNUM

Assistant Chief
Information Sciences Division

FOR THE COWEWJ'@ %“
JOHN P. HUSS '

Acting Chief, Plans Office

‘If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC. (ISIP Griffiss AFB NY 13441. This will assist us in

maintaining a current mailing list.

Do not return this copy. Retain or destroy.

e ad i A amannt s a v B
Bt i ‘”“ﬂin:i-mn...“ CIEN

s NI A ad Y
i G = R S

St o i

UNCLASSIFIED |
SECURITY WFIC—Z'HON OF THIS PAGE (When l)-.’tLEn{ofvd)A ‘
J 7 /REPORT DOCUMENTATION PAGE Ly ‘
¢ ’ Q 1. REPO "TMBEB 2. GOVT ACCESSION NO.| 3. RECIPIE'Z CAJALOG NUMBER
/ /] ranc &R—Sl-m /QD-/S’ ZA2L 3 54
—Jas e e e em—————e . ERIOD CBVERED 4
20 Final Technical Repart
(& '] JESION SPECIFICATION VALIDATION . / 125 sep 79— 29 vec 80
A4 —— v e e .

N/

\
8. CONTRACT OR GRANT NUMBER(S)

/Yyﬁ Robert'M. lazer PON | ST
C’ | e /5] Fi0602-79-c-0042 |

9. PERFORMING ORGANIZATICN NAME AND ADDRESS ~e®" 110, PROGRAM ELEMENT, PROJECT TASK
AREA & WORK UNI,'F«U“

University of Southern California 2F /
Information Sciences Institute 1/;ZEHN§§2%1817 L_,/ —J// /
Marina Del Rey CA 90291 L e

11. CONTROLLING OFFJCE NAME AND ADDRESS

Rome Air Development Center (ISIE) ,”)7 Juns &2§1A/
Griffiss AFB NY 13441 IS o

NAME & AOERESS(II dilterent from Controlling Oftice) 15. SECURITY CL ASS. (of this report)

| 12, ..REPORT DATE

T4 MONITORING A

UNCLASSIFIED

15a. DECL ASSIFICATION DOWNGRADING
CHEDULE

N/A

Same

16. DISTRIBUTION STATEMENT (of this Repoet)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY MOTES

RADC Project Engineer: Rocco F. Iuorno (ISIE)

19. KEY WORQS (Continue on reverse aide if necessary and identify by block number)
Software design, Software specifications, Software requirements,
Symbolic execution, Requirements language, Software design language,
Specification language, Software testing, Validation.

/)

20. ABSTRACT (Continue on reverse side If noco.rary and identity by block number)

--4 This report documents gbe’research.gerformed by the University of
Southern California, Information Sciences'Tnsfituteﬁtoncerning the feas-
ibility of validating formal software specification. The one year
effort attempted to show that with a suitable formal software specifi-
cation language, specifications could be validated in the same manner

as computer designs are currently tested. —

A otk i e,

DD , 52:“3,, 1473 ‘ﬂ; EDITION OF t NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) /

‘slcia'ﬁri?Qigijg;zg ??ﬂ;;m

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

-

by

UNCLASSIFIED

j
!
SECURITY CLASSIFICATION OF Tu'C PAGE/When Data Entered)

Table of Contents

1. SUMMARY
2. GIST SPECIFIER’S MANUAL

2.1 INTRODUCTION
2.2 TYPES
2.3 RELATIONS AND ATTRIBUTES
2.3.1 Attributes
2.3.2 Attributes and Subtypes
2.4 CONSTRAINTS
2.4.1 Use of Constraints
2.5 DERIVATION RULES
2.6 OBJECT EXPRESSIONS
2.6.1 Literals
2.6.2 Variables
2.6.3 Attribute Reference
2.6.4 Descriptive Reference
2.6.5 Arithmetic Expressions
2.7 PREDICATES
2.7.1 Propositions
2.7.2 Quantified Predicates
2.7.3 Predicate Composition
2.8 ACTION DECLARATIONS
2.8.1 Primitive Statements
2.8.1.1 Object Creation
2.8.1.2 Object Destruction
2.8.1.3 Adding Relationships and Classifications
2.8.1.4 Removing Relationships and Classifications
2.8.1.5 Updating Relationships
2.8.2 Action Invocation
2.8.3 Compound Statements
2.8.3.1 Conditional Behavior
2.8.3.2 Sequentia! Behavior
2.8.3.3 Point Invariants
2.8.3.4 Alternative Behavior
2.8.3.5 Preferential Behavior
2.8.3.6 Non-primitive Granularity
2.8.3.7 lterative Behavior
2.9 ADVANCED TOPICS
2.9.1 Sets and Sequences
2.9.2 Multiple Lines of Control
2.9.3 Temporal Reference
2.98.4 Boundaries
2.9.5 Orderings
2.9.6 Meta Concepts

3. GENERAL APPROACH TO WRITING GIST SPECIFICATIONS
3.1 IDENTIFYING TYPES AND SUBTYPES

1-1
2-1

2-1

22

24

25

27

2.7
2-10
2-11
212
2:12
2-12
2-13
2-13
2-14
2-14
2-14
2-16
217
2:17
2-20
2-20
2-21
2-21
222
2.22
2-23
2.23
2.23
2.24
2-24
2.25
2:25
2-26
2.26
2-28
2-28
2-28
2-28
2:28
2:28
229

3-1
31

3.2 IDENTIFYING INDIVIDUALS

3.3 IDENTIFYING RELATIONS

3.4 IDENTIFYING DERIVED CONCEPTS

3.5 IDENTIFYING STATIC CONSTRAINTS
3.6 IDENTIFYING ACT.ONS

3.7 IDENTIFYING DYNAMIC CONSTRAINTS
3.8 IDENTIFYING ACTIVE PARTICIPANTS
3.9 PROGRESSING IN COMPETENCE

4. CONSTRUCTING GIST SPECIFICATIONS

4.1 SOURCE-DATA MAINTENANCE EXAMPLE
4.1.1 Suppressed details
4.1.2 Plan for Constructing Source-Data Maintenance Specification
4.1.2.1 Modeling objects and relationships of domain
4.1.2.1.1 Notation for types and binary relations
4.1.2.1.2 Type and attribute definitions for the domain
4.1.2.2 Static constraints
4.1.2.2.1 A "static” constraint
4.1.2.2.2 The use of derivation
4.1.2.3 Modeling user commands
4.1.2.4 Modeling change
4.1.2.4.1 Object boundaries
4.1.2.4.2 The top-level action to support user-commands
4.1.2.4.3 A simple action
4.1.2.4.4 Adjusting process "granularity”
4.1.2.4.5 Non-determinism and constraints
4.1.2.4.6 Shifting characters on a line
4.1.2.4.7 The use of historical reference
4.1.2.4.8 Historical reference and inserting lines into units
4.1.2.4.9 Historical reference and backup/restore commands
4.1.2.4.10 Historical reference and desired behavior
4.1.2.5 Dynamic constraints
4.1.2.5.1 A "dynamic" constraint
4.1.3 Review of specification
4.1.4 Implications for Gist
4.1.5 Implications for the source-data maintenance task
4.1.6 Ditficulties of constructing the specification
4.1.7 Ditficulties of understanding specification
4.1.8 Use of specification
4.2 HOST-IMP SPECIFICATION
4.2.1 Qverall organization of specification
4.2.2 General message-passing features
4.2.3 Specialization to host-imp world
4.2 .4 Implications for Gist
4.3 TEXT FORMATTER SPECIFICATION
4.3.1 Source of Problem
4.3.2 Formatter activities
4.3.3 Interface
4.3.4 Organization of specification
4.3.5 implications for Gist '

3.2
32
3-2
33
33
3-4
3-4
3-4

4-1

4.1
4.2
4.4
4-4
4.5
4.7
4-8
4.8
4.9

4-10

412

4-12

413

414

4-15

415

4-16

417

418

4-18

419

4.21

4-21

4-21

4.22

4.22

4.22

4.23

4

EB g e

. ey

- 111
j

4.3.5.1 New Gist usage 4.32

4.3.5.2 Exposed weaknesses of Gist and dissatisfaction with specification 4-32
4.3.5.3 Advantages accrued from the use of Gist 4-33

] < 4.3.6 Extensions to formatter 4-33
4.3.6.1 Separating justification and filling 4.34

4.3.6.2 Filtering output pages 4.34

4.3.6.3 Forcing text to appear on a single page 4.34

4.3.6.4 Extra space after sentence 4-34

4.3.6.5 Hyphenation during filling 435

4.3.6.6 Conditionals 4.35

5. GISTINITIAL OPERATING CAPABILITY DESCRIPTION 5-1

5.1 INTRODUCTION 51

5.1.1 Transliteration 5-3

. 5.2 Editor, PrettyPrinter, and File 170 53

i 5.2.1 Commands which Alter Specification Text 5-4

] 5.2.2 Commands which Change the Editor's Focus 55
5.2.3 PrettyPrinting 5-6

5.2.4 Commands for Saving and Restoring Specifications 5-6

5.3 Specification Testing 57

5.3.1 The Gist Declaration Compiler 57

5.3:2 The Gist Evaluator 5.7

5.3.3 Literaf and Created Objects) 5.8

5.3.4 Input/Output Facilities 5.9

5.4 Debugging/Testing Aids 5-10

5.4.1 Moditying a Specification 5.11

5.510C Coverage 5.11

6.10C TRACES 6-1

6.1 I0C TRACE--PSL EXAMPLE 6-1

6.2 I0C TRACE -- CAMELOT EXAMPLE 612

7. DESIGN FOR A GIST SPECIFICATION VALIDATION FACILITY 7-1

7.1 OBJECTIVE 71

7.2 BACKGROUND 71
7.3 APPROACH 7-4
7.4 PLAN 7-5

Appendix). GIST GRAMMAR . 7-7

‘ Appendix . GIST SPECIFICATIONS 14
‘ 1.1 SOURCE DATA MAINTENANCE SPECIFICATION i1
: .1.1 *** Type definitions for objects of domain *** -1
b 11.1.2 *** Static constraints on the world *** "2
, 11.1.3 *** User commands *** .3
: 11.1.4 *** Dynamic constraints on the world *** -5
% 1.1.5 *** Interface with user *** -6

: 11.1.6 *** Actions to perform commands *** n-e]
' 11.1.6.1 *** SOURCE-DATA-MAINTENANCE *** i-6

11.1.6.2 *** UPDATE ***
j 1.1.6.3 °** ADD ***

11.11.6.4 *** PURGE °*°** -7
11.11.6.5*** REPLACE *°** -8
1.1.6.6 *** COPY-UNIT *** -8
1.11.6.7 *** CHANGE °*°* . -8
11.1.6.8 °** INSERT *°** -9
1.1.69°*°* DELETE *** i-10
1.1.6.10 *** SHIFT *** 1-11
1.1.6.91 *** MODIFY *** 11
1.1.6.12 °*°* COPY.LINES *** 11-13
L11.6.13 *** REPLACE-LINE *** 1-13
i1.11.6.14 *** COPY-FILE *** 13
11.1.6.15 *** BACKUP and RESTORE *** 1-13
11.4.7 *** Restoration following temporary changes *** II-15
I1.1.8 *** Maintenance of information about units *** 16
1.2 HOST-IMP SPECIFICATION 17
1.3 FORMATTER SPECIFICATION 11-23
11.3.1 Definitions of top level types I1.24
11.3.2 FORMAT (action) 11-2€
11.3.2.1 CREATE«LINELETS«FROM«MIXLETS (action) "W-27
1.3.2.2 PAGINATION (action) I-28
11.3.2.2.1 PAGE«~PARTITION (relation) -26
11.3.2.2.2 CREATE«PAGE«~IMAGE (action) 1-30
1.3.2.2.2.1 PAGE+«NUMBER (relation) 1-31
11.3.2.2.2.1.1 PRECEDING «PAGE«~NUMBER (relation) #H-31
1.3.2.2.2.2 STRIP«LEADING+ AND«TRAILING«BLANKS (relation) H-32
11.3.2.2.2.3 LINES+FROM«LINELETS (relation) 1-33
i1.3.2.2.2.4 CREATE«TITLE+«LINES {(action) H-34
11.3.2.3 PARAGRAPHING (demon) H-38
11.3.2.3.1 CREATE«JUSITIFIED«INFO«LINES-FOR«PARAGRAPH (action) {i.3e
1.3.2.3.1.1 CREATE«JUSTIFIED«INFO+«LINE+«FOR+«WORDS (action) 1-37
11.3.2.3.1.1.1 CREATE«JUSTIFIED«LINE+~FOR«WORDS (action) 1.38
11.3.2.3.1.1.1.1 ARBITRARILY«PAD«WORDS+WITH+BLANKS -39
11.3.2.3.1.1.1.1.1 PAD«INTERIOR~WITH«BLANKS (action) 1-40
1.3.2.3.1.2 CREATE«UNJUSTIFIED«INFO«LINE « FOR+~WORDS (action) 1|-41
11.3.2.3.1.2.1 ARBITRARILY«PAD«WORDS«WITH+BLANKS (action) -3¢
11.3.2.3.1.2.1.1 PAD~INTERIOR+WITH+BLANKS (action) -40
11.3.2.4 SPLIT«OVERLENGTH«LINES (demon) 1-42
11.3.24.1 CREATE«SPLIT+LINES+«FOR+OVERLENGTH<«LINE (action) 1-43
L 1.3.2.4.1.1 SUBSEQUENTIZE«INFO (action) II-44
11.3.2.5 LEFT«MARGIN«PADDING (demon) 11-45
\ 11.3.2.5.1 EXTEND+«BLANK+~SEQUENCE (action) .46
! 11.3.2.6 CENTERING.(demon) .47
. 11.3.2.7 INTER«LINE~PADDING (demon) 11-48
1.3.2.7.1 EXTEND+~PADDING+LINE+SEQUENCE (action) i-49 |
1.3.2.7.1.1 SUBSEQUENTIZE «INFO (action) H-44 ;]
REFERENCES "

List of Figures

Figure 2-1: Action Declaration in Gist

Figure 4-1: Structure of source-data maintenance domain
Figure 4-2: User commands supported by the system
Figure 4-3: Modeling of objects and relations in Gist
Figure 5-1: Gist IOC configuration

List of Tables

Table 5-1: 10C symbol transliteration

2-18
4.2
4.3
45
52

5-3

t

1-1

1. SUMMARY

This report documents our findings concerning the feasibility of validating formal software
specifications. This one-year effort attempted to show that with a suitable formal software
specification language, specifications could be validated much as implementations are currently
validated, through applic 2tion of testing methodology.

This approach necessitated an "executable” formal specification language so that test cases couid

‘be "run” on the specification itself. Such a language was already under development within

USC/Information Sciences Institute. Our first task was to document this language (see Chapter 2)
and our approach to using it to write formal specifications (see Chapter 3). We then applied it to three
real, moderate-sized systems (see Chapter 4) to ensure that it was suitable for military applications.
These experiments were highly successful in that we were able to formally specify the functional

behavior of these three systems.

The next major task of this effort was to demonstrate that specifications in this formal fanguage
could be validated by running them on test data. Towards this end, we built a prototype interactive
testing facility calied the Initial Operating Capability (I0C). It consists of an evaluator capable of
executing specifications expressed in a subset of the formal specification language, and an executive
for entering, editing, and displaying specifications, for initializing the state within which one is
evaluated. for displaying states, and for tracing and breakpointing the evaluation interactively in a
DDT.like manner. The 10C is described in Chapter 5 and examples of its use are given in Chapter €.

The final task in this effort was to design a capability for testing a specification on a whole class of
cases simultaneously, rather than one at a time, through symbolic execution. This design is
documented in Chapter 7 of this report. It is based on extending the evaluator to handle symbolic data
as well as concrete data. so that as evaluation proceeds, predicates describing incompletely defined
data (i.e., the symbolic data) are automatically constructed dynamically, and wherever
incompleteness of the data prevents determination of which control path to follow, all possible controf
paths are explored, each conditioned by the predicate necessary to select it.

Thus, there is tradeoff between breadth of test cases covered and complexity of the symbolic
evaluation. For this reason. the design allows the person validating the specification to interactively
determine which data should be concrete versus symbolic, and hence, dynamically define the class of

test cases being explored.

1-2 SUMMARY

E The following observations and conclusions emerged from this study:

! 1. While functionally complete, the formal specifications omitted some aspects of the actual
1, systems.
|

These omissions were intentional. We have tried to prevent implementation details from
intruding into the formal specification. For that reason data representations are not part
of our specification language. This prevents us from describing some {possibly required)
aspects of the specified system, inost noticeably their 170 interfaces. We believe these
(required) representatives should be documented .as part of the chosen (required)
implementation of the system, rather than as part of its specification.

2. Existing specifications incorporate implementation details.

In order to get a good system description for which we could build a formal specification,
we had to de-compile the existing description so that it only described the functionality
desired, rather than an implementation of it. As current or former programmers, we are all
overly sensitized to efficiency issues and tend to describe a system in terms of a feasible
(or possibly preferred) implementation. Representation issues are one example;
algorithm choices are another.

3. Formal specifications are unreadable.

This is unfortunately true for our language as well as all others. The reason is that the
mechanisms used in informal communications to aid understanding--such as overview,
summaries, examples, elborations, alternative viewpoints, role descriptions (why
something is important)--are totally missing. Basically, no roadmap is provided to help
someone read the specification. Until these issues are addressed, farmal specifications
will only be understandable when accompanied by an informal natural language
description.

4. The formal specitication language is not interpretable.

The reason is that the formal specification language is highly context dependent and this
context is affected by many remote statements such as type declarations, constraints,
demons, inference rules, action definitions, and individual uses of historical reference.
All these statements must be located, collected, and "translated” before interpretation
' can begin. Thus, the evaluator consists of a compiler which performs these tasks and an
interpreter which uses these compiled forms.

5. The evaluator must be interactive.

The formal specitication language is highly non-.deterministic and the non-determinism
interacts with the specified constraints so that only those choices which don't violate
constraints either now or in the future are selected. Operationally, the evaluator can only
discover the appropriate choices by trying them and rejecting those that violate
constraints anywhere during the evaluation. This leads to a classical backtracking
search. To control the size and depth of this search space during evaluation, the person
using the 10C can supply an appropriate choice rather than have the evaluator search for
one.

-
g P . - S s g

2-1
2 GIST SPECIFIER’S MANUAL

2.1 INTRODUCTION

A Gist specification is a formal description of valid behaviors of a system. This description is
composed of three parts:
* A specification of object types and relations between these types. This determines a set
of possible states. A possible state consists of a collection of objects, each of which is

classified as an instance of one or more of the specified types. The objects in a possible
state may be related by the specitied relations.

» A specification of actions and demons, which define transitions between possible states.

« A specification of consiraints on states and state transitions. The valid behaviors of a
system are those defined transition sequences that do not violate any constraints.

This document provides a tutorial introduction to Gist. The concepts and syntax of Gist are
presented in the context of describing the behavior of an imaginary system of ships moving cargos

among various ports.

A second goal of this introduction is to provide some insight into our conception of “good taste” in
writing Gist specifications. In Gist. as in programming languages, there are often several ways to
specify the same behavior (functionality). In programming languages, one must make traceoffs
among understandability of code, modifiability, and efficiency. In Gist, etficiency is not an issue; there

is no sense in which two specifications of the same behavior differ in efficiency. The main goa! of the

specifier is to maximize his confidence that he has specified the intended behavior. But important
secondary goals are to make a specification understandable to pecple other than its creztor, and to
make it maintainable. The rules of thumb and good practices described are aimed at these latter

goals.

As with any language. the use of common conventions can itself improve communication between
people. But the specifier should always remember that his overriding concern is to be confident that

he is specifying the behavior intended.

While a primary purpose of writing a specification is to use it in the process of implementing
computer software. there are no software concepts within Gist. In particular, all behavior is specified
without the use of the concepts of input/output or the information representations available on any

particular machine or in any particular programming language(s).

2-2 GIST SPECIFIER'S MANUAL

2.2 TYPES

The first task of a specifier is to decide on a collection of object types that will capture the important
objects, or values, that the process manipulates. Since there is usually some verbal description of the
process avaiiable, a good rule of thumb is to consider common nouns (particularly concrete nouns)
as the names for object types.

Following this rule, even the cursory description of our example domain given earlier suggests the
use of ship, cargo, and port as object types.

The names to be used for object types in Gist must appear in type declarations. The simplest form
of a type declaration gives nothing but the name:
type ship;

type port;
type cargo;

Gist has only a tew predefined types. Among these are number,1 integer, natnum (natural
numbers), and character. These types may be used in a specification without declaration.
Sometimes one of these types is appropriate, but the specification would be more natural if a different
name were used. This can be done by defining a new type name in terms of an existing one:

type tonnage definition natnum
The previous line defines the type name "tonnage” as isomorphic to the type "natnum®.

The only reason to use the predefined types, however, is to use some capability that is already
defined for them. The numerical types, for example, provide access to arithmetic operations,

comparisons, and the ability to include numerical constants in the specification.

it is a bad practice to specify types to be synonyms for numbers because one anticipates the use of

numbers as a representation in some implementation.

An enormous gain in expressiveness is obtained by specitying supertype relationships among
types. if all objects of one class also belong to a second class, the larger class should be declared to

be a supertype of the smaller class:

1Number corresponds to the REALs. it should not be thought of as specifying "floating point™ representation on a
computer.

N o

TYPES 2-3

fype cargo unique supertype of
< grain;
fuel
>

This declaration states that every instance of cargo is an instance of either grain or fuel, but not both.

tn other situations. the named subtypes may not e..>aust the supertype:

type ship QOptional supertype of
< oiltanker;
cruiseship
>
The word gptional indicates that a ship may be either an oiltanker or a cruiseship (although not both),

but may be neither.2

Although the verbal names used for types often give no clue to supertype connections, as with the
names “ship" and "oiltanker™, certain patterns should be considered. Noun pairs, such as “cruise
ship", are frequently used to name subtypes of the second noun, as are compound nouns. Adjectives

frequently are used with nouns in the same way, as in "military vessel".

in order to fully describe a process, it is sometimes necessary to refer to individual objects (values)
as well as to entire classes. The names of individuals may be freely chosen by the specifier. but the
type to which each belongs must be declared. This can be done as part of the type declaration:

tvpe port includes {SentaBarbara, Seaitie};

tvpe grain definition {Corn, Wheat);
type fuel definition {Oil, NaturalGas}

The declaration can either enumerate some of the instances of the types (includes] or may
enumerate them all (definition).

Linguistic clues that indicate the need for declaring individual instances of types include the use of
proper nouns, mass nouns, and collections of adjectives (like color names) used to modify the same

type names.

The primary motive for declaring various types of objects in a specification is that the instances of a
type are perceived to share characteristics not common 1o instances of other types. These include:

2G:st also permits declarations of "overlapping” subtypes, and types with multiple supertypes.

2-4 GIST SPECIFIER'S MANUAL

* relationships that hold between the objects
* actions that may be performed on the objects
* constraints on the objects

The remainder of the declaration portion of Gist is concerned with specifying these regularities.

2.3 RELATIONS AND ATTRIBUTES

In describing a process in English, we use specific words and syntax to describe the ways objects
are related to one another. In “"ship bound for SantaBarbara" the phrase "bound for" indicates a
particular relation that can hold between ships and ports--namely, a ship can be scheduled to go to a
particular port. “A ship based in SantaBarbara" uses a different phrase, "based in" to talk about a
different relation between the same two types. "A ship containing 50 tons of wheat" indicates yet

another relation in this domain--ships may contain specific quantities of specific cargos.

“In Gist, these various kinds of associations that may relate the individua! instances of the types are
called relations. Arelation is declared by giving it a hame and by naming the object types it relates:
relation CONTAINS (SHIP, CARGO, TONNAGE) (2.1)
This does not specify which instances of ship, cargo, and volume are related or when such
relationships arise. But it does say that the relation name CONTAINS will not be used to relate
objects of any types other than the three named.

If in a given state the ship USS-Prairie contained 50 tons of Wheat, we would say in Gist
terminology, that there was a relationship in CONTAINS having USS-Prairie filling the sHIP role,
Wheat filling the CARGO role, and 50 filling the TONNAGE role.

Technically, each role of a relation has both a name and a type. In many cases, the specifier will
feel comfortable using the same name for the role as was used for its type. This is done by using only
the type name in the declaration, as in (2.1) above. In other cases, there is mnemonic value in
choosing a name for the role that is more expressive than the type name. Finally. there are constructs
in Gist that use the role name explicitly. For relations that have more than one role of the same type,
these constructs are useable only if those roles have been given distinct names. Since it is a bad idea
to try to anticipate which roles one may need to reference by name in a specification, one should
always choose distinct names for two roles of the same type in the same relation.

There are two ways to indicate a name for a role of a relation when it is to differ from the type name.

RELATIONS AND ATTRIBUTES 2.5

One is to choose as the role ‘name a composite name of the form “typename.distinguisher”--e.g.,
“COUNTRY.FROM". In this case, the composite name is the role name while its prefix (in this case,
"country”") is the role type. Alternatively, one can choose an arbitrary name for the role and specify
its type explicitly, separating the two names by a "|" in the declaration. Suppose we wanted to have a
relation that indicated what goods were being traded among nations. We couid do this with a relation
declared by:
relation TRADE {(COUNTRY.FROM, GOODS | cargo, COUNTRY.TO)

making TRADE a ternary relation having roles named COUNTRY.FROM, GOODS, and COUNTRY.TO,

whose types are country, cargo, and country, respectively.'

In general, one can imagine countless relationships in any moderately rich process domain. it is
not possible 10 determine in advance precisely which ones will be sufficient, or convenient, to use for
the entire specification. A good rule of thumb, however, is to start with those mentioned in the verbal

process description. Linguistic clues to relationships include:

 the use of "situational” verbs like "contain” or "own",
« the use of passive forms like "be connected to” or “be bound for”,

* noun phrases modified by prepositional phrases, like "the berth of a ship” or “the salary
of an officer”,

* possessive forms, like "the ship’'s country of registry”, or "the officer's salary”.

2.3.1 Attributes

It is usually the case that a large percentage of the useful relations in a specification will be binary
relations. These can be declared and used like ordinary N-ary relations, but may also be dectared and
used in a speciat attribute notation in Gist. The use of attribute notation makes the declaration of the
relationship. its use, and the specification of constraints on it more concise and, arguably, easier to

understand.

Attributes are declared as part of type declarations. For example. to declare the binary relationship
between ships and their country of registry, the attribute is named in the declaration of one of the
types.

type ship (REGISTRY | country);
This declaration indicates that ships and countries are related by an attribute named REGISTRY.
Elsewhere in Gist. ": REGISTRY" is used to designate the mapping for ships to countries, and
"I REGISTRY" to designate the inverse mapping frem countries to ships.

2:6 GIST SPECIFIER'S MANUAL

Many attributes may be declared in a single type declaration. The declaration:
tvpe ship (REGISTRY | country, CAPACITY | tonnage, DEADWEIGHT | tonnage) (2.2)
specifies the existence of three mappings, whose names are intended t0 convey the meaning of the
mappings.

The declaration of relationships, including attributes, should be mude for the most general
applicable types. It is then "inherited" by the subtypes of those types. For example, having declared
the attribute "REGISTRY" between ships and countries, theré is no need to duplicate the declaration
for subtypes of ship, such as oiltanker, or for subtypes of country.

Having decided to use an attribute declaration as opposed to a binary relation, a specifier still must

decide in which of the two relevant type declarations to include the declaration of the attribute.3 4 1t

is impossible to do more than give guidelines on this matter, since there is no formal distinction in the
declaration content. As is frequently the case with guidelines they may suggest conflicting

organizations.

* Linguistic guideline. Choose an attribute name that makes the phrase:
<attribute name> of/in/for/ <type>1 must be <type>2 .

sound like a sensible description of the relationship. Declare the attribute within the
declaration of type,. Each attribute in (2.2) above would be suggested by this rule, since:

registry of ship must be country
capacity of ship must be tonnage
deadweight of ship must be tonnage

sound right.

* Functionality guideline. If the mapping is many-to-one--each object of type, maps to
exactly one object of type,, but an object of type, may map to zero, one, or more objects
of type,--then declare the attribute with the declaration of type,. All three attributes in
(2.2) suggest this.®

« Structural guideline. Some relationships have a "part-whole" feeling to the specifier.
Sometimes this has a strong physical basis in the real world, as with the slips of a pier.
Other times the feeling is more one of a logical dependency specific to the process under
consideration, as with the dependents of an employee. Try to declare such attributes as
part of the declaration of the "whole" type.

alt could be redundantly stated in both places, but this would not be a good idea in general, since any change to the
declaration would require two changes in the specification to maintain consistency.

40! course, ¥ the two types gre the same, there is no probiem.

sumin default constraints on the mappings. described later, are designed 1o mesh well with this guideline.

e

et et = e

e e\ e

RELATIONS AND ATTRIBUTES 27

It is possible, by means described in Section 2.4, to specify constraints on attribute mappings along
with the attribute declaration itsell. .Sometimes the restriction of the mapping that involves a named

subtype of one of the two types is more highly constrained than the mapping as a whole. For

instance, crewmember's salaries may range from $10,000 to $40,000, but officer's salaries may have
k 10 be above $25,000. When this situation arises, more effective use can be made of Gist's constructs
if the attribute is declared with the type whose subtype is further constrained--crewmember, in this

example.

"2.3.2 Attributes and Subtypes

Whenever a proposed attribute relationship involves a type whose instances are totally enumerated

by literals in the specification, the specifier should consider the possibility that a more natural and
L useful specification could be obtained by using the supertype concept. In other words, the attribute
relationship between type, and enumerated typeg can be replaced by having a named subtype of
type, for each instance of typeg, and eliminating typeg entirely. A particularly common situation to be
aware of is the use of "flag" types whose instances are "yes" and "no”, or "true” and “faise”, or 0
and 1. It is aimost always preferabie to provide a name for each case and make the encompassing

type a "ynique supertype of" these named types, or 10 name one of the cases (typically, the
"positive” one} and make the encompassing type an “gptional supertype of" that named type.

For example. it would be preferable to specify the fact that some ships are government-owr 2d as:

type ship(...) optional supertype of
{governmentship (...)>;

rather than:

type ship(....GOVERNMENTOWNED | {Yes No})

2.4 CONSTRAINTS

The declaration of types and relationships lays out a wide variety of possible process states--that is,
states containing collections of instances of those types and relationships between objects of
appropriate types. However, it is nearly always obvious that many of these states may never really

arise. Sometimes this is because of physical constraints in the process domain.-e.g., a ship cannot

simultaneously occupy muitiple slips, nor can multiple ships simultaneously occupy one slip. In other
cases, it is not physical reality, but the desired process which restricts the potential states. For
example, there may be a "rule” which states that no ship should simultaneously carry fuel and grain.
In either case, Gist provides declarations for specifying such constraints on possibie states.

2-8 GIST SPECIFIER'S MANUAL

The most general construct permits the specifier to state that a given condition must either:

* hold in every process State (a requirement)

* hold in no process state (a prohibition).

The constraining condition is specified by a Gist predicate. Predicates are discussed in more detail in
Section 2.7, but basically foliow conventional predicate calcuius notation. For example,

always prohibited 3 ship fuel,grain || CONTAINS(ship, fuel, $) A
CONTAINS(ship, grain, 8)

would state that no ship may ever be used to simulftaneously transport fuel ang grain.

always required V oiltanker || 3 officer || officer : ASSIGNMENT = oiltanker A
officer : SENIORITY > 10

would require that officer assignments ensure that every oiltanker have at least one officer with over

10 years experience.

Although it is possible to describe all Gist's constraints in this way, experience shows that many
constraints can be naturally expressed as constraints “on" particufar relations or types. For such
constraints Gist provides a means of expressing the constraint as part of the type or relation

declaration.

With respect to a given relation, there are two classes of constraints which may be specified. The
first concerns constraints on individual relationships in the relation. For instance, to prohibit trade of
any product between two countries which are both producers of that product, one could place a
constraint on the TRADE relation in terms of a PRODUCES relation:

relation PRODUCES (COUNTRY, GOODS | cargo);
relation TRADE (COUNTRY.FROM, GOODS | cargo, COUNTRY.TO)
where always prohidit PRODUCES (country.from, goods) A
PRODUCES((country.to. goods)

end

The second form of relation-specific constraint restricts the collection of relationships which may
co-exist in a given relation. For any partitioning of the roles of a relation into two non-empty
partitions, one may view the relation as a mapping from one partition to the other. it is possible to
constrain the "multiplicity” of such a mapping. For example, the relation CONTAINS implicitly
provides a mapping from ship-cargo pairs to tonnages. For a given ship-cargo pair, there can be at
most one tonnage (the amount of that cargo or that ship). But for a given tonnage, there is no
restriction on the number of ship-cargo pairs which CONTAINS relates to it. This can be expressed
by augmenting the declaration of CONTAINS:

CONSTRAINTS 2-9

retation CONTAINS (SHIP, CARGO, TONNAGE)
any (SHIP, CARGO) gptional

The pair (SHIP,CARGO) defines the role partitioning. The other partition is implicitly (TONNAGE). The
word gny preceding the explicit partition indicates no constraint on the mapping from (TONNAGE) to
(sHi1P,cARGO). The word gptional indicates that a given (SHIP,CARGO) pair may map to zero or one
(TONNAGE). This constraint could also have been written
optional (TONNAGE) any
The ways to specity the multiplicity of a mapping include:
indicator muitipticity

any no restriction
optional Oor1

unigue exactly 1
multiple 1 or more

anyinteger N exactly N

When attributes are used to specify binary relationships, it is still possible to state both torms of
constraint within the type declaration which introduces the attribute. The "mapping multiplicity "™
constraints are indicated by placing multiplicity indicators before and after the attribute specification.
For example:

tvpe ship (gnigue REGISTRY | country any, ...) (2.3)
constrains the relationship between ships and their country of registry so that each ship must have
exactly one country of registry, but a given country may have zero or more ships registered in it.

If no multiplicity indicator is given in a declaration the default is "ynigue" for the mapping from
declaration type to attribute type._ and "any" for attribute type to declaration type. Thus example (2.3)
could be written simply as‘:

type ship (REGISTRY | country, ...)
defaulting both multiplicity constraints.

Constraints on individual relationships in an attribute relation can also be declared within the type
declaration in which the attribute is declared. In fact, it is possible to constrain combinations of
different attributes of a given type, as illustrated in the following examples:

type draft definition natnum

type port (MAXDRAFT | draft, COUNTRY multiple)

tvpe ship (..., DRAFT.SHIP, any PORTOFCALL | port, PORT.HOME)
where always prohibit oraft.ship > portofcall : MAXDRAFT (2.4)
end

would prohibit a ship from having a port of call for which the ship was too large.

210 GIST SPECIFIER’'S MANUAL

In addition, one could require that a ship be capable of entering its home port by including in the
ship declaration
always require draft.ship < port.home : MAXDRAFT
A type constraint of the form "always prohibit condition” declares that the condition may never hold
for any instance of the type in whose declaration the constraint appears. The condition refers to the
object being constrained by using the type name as a variable. It may also refer to the objects in
attribute relationships with that object by the atiribute names used in the declaration. The condition
holds, and thus violates the constraint, if any combination of attribute values satisfy it. Thus
constraint ((2.4)) prohibits a ship from having any port of call which is inappropriate regardiess of how
many acceptable ports of call it may have at the same time.

Analogously, an "always require condition"” constraint on a type requires the condition to hold for
every instance of the type, for all combinations of attribute values. In all cases, “always reguire
condition” and “always prohibit Jcondition” are equivalent. As with other predicates, it is generally
easier to read a constraint in a form which reduces the use of the logical operator 1.

2.4.1 Use of Constraints

There are two primary purposes for constraints in Gist specifications. The first is as an aid to
someone trying to understand or implement a (bortion of) a specification. Understanding and
implementation both involve a great deal of mental simulation of behavior. This in turn requires
consideration of how behavior will proceed under various conditions. Constraints are a powerful
means of limiting the range of conditions which must be considered.

The second use of constraints is to aid the specification writer. Consider two ways people use what
we might term "constraints” in English--e.g, "Don’t let your bank balance be negative.”

* This might be treated as a rule to do something (although what to do is not stated)
whenever the balance drops below 0 to rectify the situation. In programming terms, use
of a constraint does not say that the condition always holds, but that when it doesn't hold,
some form of “"interrupt” process is used to re-establish it. Gist's semantics does not
treat constraints in this way.

* Another use people make of constraints is to /imit choices. The bank balance constraint
will limit a person's selection when buying a stereo, for example. This is Gist's semantics
for constraints--that choices are always to be made so that no constraint will ever be
violated. This implies that choices are limited not only by their immediate affects, but by
their "downstream™ consequences as well. This is analogous to a person realizing that
he can’t buy a stereo, not because his bank batance would go negative when he brought
it, but because it would go negative when he paid the rent two days later (a behavior for
which he has no alternative).

L8
i .4

.

CONSTRAINTS 2.1

itis often easier to specify behavior by allowing the procedural part of the specification to contain too
many behaviors and letting constraiats prune the alternatives.

in choosing what constraints are worth stating explicitly, a verbal process description is of limited
use. Some constraints may be expressed verbally, but many are such "common knowledge" that
they are left unstatad--"two ships can’t be in the same slip”, "a ship may not be loaded above its
capacity”. A specifier can state any obvious constraints which come to mind before working on the
procedural portion of his specification. But he should be on the lookout for situations where he is
writing procedural specification for the purpose of "avoiding” a problem. An example of the way
constraints can collaborate to simplify the procedural part of a specification is presented in section
28.

2.5 DERIVATION RULES

Derivation rules are provided in Gist to permit the specifier to expand his vocabulary to include
concepts which can be defined in terms of other concepts, without having to treat the concepts as
though they were independent and maintain their equivalence procedurally. We might say "a ship is
docked at a pier if and only if it is berthed in some slip of that pier” to define the concept of "docked
at” in terms of "berthed in" and the relationship between slips and piers.

Gist permits derivation rules for types and relations (including attribute relations). To define a new
derived relation. the Gist specification should include a normal declaration of the relation, together
with a predicate stating the conditions under which the relation holids:

relation TRADE-PARTNERS (COUNTRY.1, COUNTRY.2)
gefinition TRADE {country.1, 8. country.2) A
TRADE (country.2, 8. country. 1)

would define a binary relation TRADE-PARTNERS which would hold between two countries if and
only if countries had mutual TRADE relationships (regardless of the goods involved).

Derived concepts in Gist may be used in all ways like non-derived concepts (including their use in
the deriveration of other concepts) save one: the derived relation may not be used as a primitive state
change statement (see section 2.8.1).

A derived attribute is specified by including a normal declaration for it and a derivation for it as well.

tvpe ship (..., optional BERTH | slip optional,
optional bock | pier derivation ship : berth : ATPIER

This defines the “"DOCK" attribute to relate a ship to a pier if and only if the ship is in a slip at that pier.

..

2-12 GIST SPECIFIER'S MANUAL

Finally, one can give a definition for a type name, where the definition is a predicate, written in
terms of the type name, which, if satisfied by some object, qualifies that object as an instance of the
type.

fype port (. .) optional supertype of
<oilport definition 3 pier || pier : PORT = oilport A
pier : HANDLES = Qi/
>

Under this declaration, a port is an oilport if and only if it has a pier which handles 0il.8

2.6 OBJECT EXPRESSIONS

The object expression is Gist's means of referring to particular objects, or values, within predicates
and statements. The referent(s) of an object expression is determined by the process state in which
the expression is evaluated and the referents of any variables used freely within the expression. An
object expression may refer to a single object, in which case it is said to make a deterministic
reference. It may refer to multiple objects, in which case it is said 10 make an ambiguous reference. It
is also possi.ble for an object expression to have no referent at all, in which case it is said 10 make an

anomalous reference.

2.6.1 Literals

The simplest object expression in Gist is a l/iteral. Distinct literals refer to distinct objects, and all
occurrences of a given literal refer to the same object. Both numeric literals (5000) and non-numeric
literals (Corn) are aliowed. Non-numeric literals must consist of single identifiers, and those
identifiers should not be uséd as the names of relations, actions, types, or variables elsewhere in a

specification.

2.6.2 Variables

Variable names in Gist are arbitrary identifiers. Each variable name has a type which restricts the
potential referents of the variable. The type may be implicit in the variable's name, or may be declared
explicitly. To have an implicitly typed variable, it is only necessary to choose its name in the same way
as names are chosen for implicitly typed attributes--e.g., "port.o/d" could be used as the name for a

variable with implicit type “port". Variables obtain their referents in two ways:

eA type which is declared 10 be a unique supertype of some coliection of types may not aiso have a deiinition; the ynigue
supertype of in fact constitutes a definition of the supertype.

3
§
4
!
2
!

OBJECT EXPRESSIONS 2.13

* A variable can be used-as a formal parameter of an action. It then obtains a referent
object from an actual parameter in an invocation of the action, and can be used 10 refer
to that object within the action’s defining statement.

* Quantified variables can be used in predicates as they are in predicate calculus. These
variables obtain as referents objects which satisty the predicate. In many uses of
predicates, these variable names can then be used later to refer to those objects.

2.6.3 Attribute Reference

Through the use of attribute names it is possible to refer to the objects related to a given object in
an attribute relationship. Such an expression may be an anomalous, deterministic, or non-
deterministic reference.

ship.1: CAPACITY
would refer to the tonnage which is the capacity of the ship referred to by the variable "shic.1".
": attribute” maps objects of the type in which the attribute was declared (in this case, "ship") to
objects of the type specified for the attribute (in this case, “tonnage").

USA :: REGISTRY
would refer to any ship whose country of registry was the USA. ": attribute” performs the inverse
mapping from *: attribute”.

2.6.4 Descriptive Reference

A descriptive reference is a reference to an object obtained by specifying its type and, optionally, a
predicate which must be true of it. Any object of the indicated type for which the predicate holds is
then a referent of the expression. The expression

ac|country || TREDE(c,0il,USA)
wouid have as its referent any country which traded oil to the USA. In this expression, ¢ | country
indicates that the type of object being referred to is "country”, while “c" is an identifier used to refer
to the desired object in the predicate which follows the symbol "||". This expression could also be
written as:

a country || TRADE(country,Oil,USA)
An expression which refers to any instance of a type is written by omitting the predicate:

acouniry

2-14 GIST SPECIFIER'S MANUAL

2.6.5 Arithmetic Expressions

Expressions whose referents are arithmetic values may be combined using the arithmetic operators
+, -, *, and \ to compute other arithmetic values, as is done in algebraic programming languages.
Furthermore, the monadic operator “goynt” may be appliéd to any expression to obtain the number
of reterents which that expression has. For instance,

gount(Seat..s :: PORT.HOME)
is an arithmetic expression whose value is the number of ships having Seattle as their home pont. If
the operand of "gount" is anomalous, then the value of the "gount” expression is zero.”

Parentheses may be used to enclose subexpressions both for readability and to override the detault
groupings imposed by Gist's syntax.

2.7 PREDICATES
A predicate is the means by which conditionality is introduced into a specification. There are a
number of basic pieces of information in a process state which can be used as the basis of tests:

* the existence of objects
* the classification of objects by type

* the relationships between objects

Like predicate calculus, Gist permits the expression of complex predicates through the use of
quantified variables and logical combinations of predicates involving those variables and literals.

Semantically, a predicate may be said to be either TRUE or FALSE relative to a particular process
state and particular assignment of referents to its variables. In the following descriptions, where no

confusion will arise, we will simply refer to predicates as TRUE or FALSE.

2.7.1 Propositions

All predicates are built up from propositions. One form of proposition is a test for the existence of
an object. Since objects may be created and later destroyed (see section 2.8.1) it is possible to have
an expression (e.g., a variable) whose referent is an object which has been destroyed. The monadic

predicate "extant"” is used to test for the existence of the referent of an expression.

7Although using "gount” to test whether the number of referents of an expression is zero does in effect test whether it is
anomalous. the predicate "gxtant” (see seciion 2.7) is the stylistically preferred way of doing this.

PREDICATES 2-18

extant ship.1
is a proposition which is TRUE if and only if the referent of the variable "ship. 1" exists in the state in
which the proposition is evaluated. Since a proposition using "extant” is FALSE if the operand of

"extant” is anomalous, it is also useful for testing whether an expression has any referents.

Anolher basic proposition is a test for referential identity of two expressions. Any two object
expressions may be compared with the logical operator "= ". The proposition is TRUE if and only it
the two expressions have at least one referent in common. If either or both expressions is anomalous.
or they have disjoint sets of referents, the proposition is FALSE.

ship.1: PORTOFCALL = Ship.2 : PORT.HOME
would be TRUE if the referent of “ship.7" had the home port of the referent of “ship.2" as one of its
ports of call.

It 1s also possible to test for non-identity of two expressions. using the logical operator "#". The
proposition is TRUE if the two object expressions have non-empty sets of referents which are not
identical. If either or both expressions is anomalous, the proposition is FALSE.

s$hip.1: PORTOFCALL # ship.2 : PORT.HOME
would be true if the referent of “ship. 1" had any port of call oiher than the home port of the referent of
“ship.2."

Another form of proposition is a test for the classification of an object.
Seattle :: PORT HOME isa oiltanker

would be true if any ship having Seattle as home port was classified as an oiltanker.

Arithmetic expressions may be compared using the comparison operators <. <, >, >, and, of

course, the identity comparison =.

The final form of proposition introduced in this section is a test for the existence of a named
relationship between objects. The relaiién must be specified by name, and the objects being tested
are specified by object expressions. A relationship is TRUE if any combination of referents of the
object expressions fill the corresponding roles of any relationship in the named relation. If the named
relation is n-ary. exactly n object expressions must appear in the relationship test. The
correspondence between the object expressions in the proposition and the roles of the relation is
positional.

CONTAINS(Seatt/e :: PORT.HOME, a grain, a fonnage || tonnage > 5000) (2.5)
is a proposition which is true if there is any relationship in CONTAINS involving a ship whose home

2-16 GIST SPECIFIER'S MANUAL

port is Seattle, a cargo which is an instance of "grain", and a tonnage which is greater than 5000.
Note the positional correspondence between the three object expressions in ((2.5)) and the roles in
the declaration of CONTAINS in example ((2.1)).

An abbreviation which is frequently usetul in propositions, and particularly in relationship tests, is
the use of the symbol "$" as an object expression. It may be thought of as having all existing objects
as its referents, and thus serves as a test of whether any existing object satisfies the predicate in
which itis used. For instance,

CONTAINS(Seatt/e :: PORT.HOME, a grain, $)
is a proposition which is TRUE if any ship having Seattle as its home port contains any amount of a
cargo which is an instance of "grain". It should be noted that, for each of the propositiona! forms, the
proposition is TRUE if any referent(s) of the expression(s) used as operands have the property being
tested, or bear the tested relation to one another. In all cases, the propositions have the semantics
normally associated with them in programming languages when all expressions involved are

deterministic.

2.7.2 Quantified Predicates

Predicates may make use of existentially and universally quantified typed variables. These
variables appear freely within the scope of the quantifier. A predicate Q of the form:
v, lt,..v It 1P
is TRUE if and only if there exist objects 01. On, where Oi is an instance of L, such that P is TRUE
when free occurrences of v, in P are taken to refer to O,. Furthermore, Q is said to be TRUE subject to
the assignment of O, to v,. Otherwise, Q is FALSE. For example.
3c|cruiseship || ¢ : REGISTRY = USA (2.6)

would be TRUE if any instances of "cruiseship™” had USA as their country of registry.

Analogously, a predicate Q of the form:

Vvt It IIP
is FALSE if and only if there exist objects 01. On, where Oi is an instance of t. such that P is FALSE
when free occurrences of v in P are taken to refer to O,. Furthermore. Q is said to be FALSE subject
to the assignment of Oi tov, Otherwise, Q is TRUE. For example,

VY o | oiltanker || 0 : PORTOFCALL : COUNTRY = USA
would be TRUE if every instance of "oiltanker"” had some port of call in the USA. (It would aiso be
TRUE, by definition, if there were no instances of the type "oiltanker”.)

PREDICATES 2-17

Quantitied variables may, like role names, be named so that the variables type is implicit in its name.
Example ((2.6)) could be written as:
3 cruiseship || cruiseship : REGISTRY = USA

2.7.3 Predicate Composition

Predicates may be combined with the unary prefix 7 and the boolean infix operators A, V,
® (exclusive or), = (implies), and = (equivalent) to form Jogical compounds. The precedence for
parsing logical compounds is the standard precedence of propositional logic. Parentheses may be
used for legibility and for groupings other than that given by the defaulit precedence. The semantics
of logical compounds is defined by the standard truth tables.

2.8 ACTION DECLARATIONS

Any application domain will have a variety of activities carried out by processes in that domain.
These activities change the state of the process in some way. They may create or destroy domain
objects (launching or decomissioning a ship}. change object relationships (giving a ship an additional
port of call), or classity or declassity objects (making a crewmember an officer). Furthermore, the
execution of an action serves to “mark time” in the prbcess‘ in the sense that Gist's facility for
temporal reference permits reference to past execution states in terms of the start, completion. and
duration of events (action executions). Thus an action which makes no changes to domain objects

may still be a useful modelling concept.

The effect of an action on the process state depends on the state in which it is invoked and on the
peramelers used in the irvocation. These parameters serve two purposes in Gist:
» As in conventional programming languages. the parameterization of a definition permits
users of the definition to specialize it to suit their needs. In the case of an action. the

user. or invoker, of the action can control its effects by specifying particular values
(actual parameters) for the roles (formal parameters) of the action.

» Reference to events in Gist's temporal reference expressions is done through a
combination of action names and parameter "descriptions”. This permits a much finer
filter on event reference than would reference by name alone.

An action declaratian consists of a name for the action and a list of names (and types) for each
formal parameter, or role, of the action. It also may contain a definition, and pre- and postconditions
for the action. Figure 2.1 illustrates the declaration of actions.

218 GIST SPECIFIER'S MANUAL
action
MOVESHIP[sHiP,PIER]
precondition INPORT (ship,pier : PIERLOC),
definition
it ship : pOCK = pier

! then comment no movement needed end comment
E else update 8ERTH of ship 10 3 slip
4 postcondition ship : DOCK = pier;

action

LOADSHIP[SHIP,CARGO,INCR : tonnage]
precondition ship : DOCK : HANDLES = cargo,
definition
if CONTAINS(ship,cargo.$)

then ypdate TONNAGE of CONTAINS(ship,cargo,$)

{0 tonnage + incr
€lse insert CONTAINS(ship,cargo,incr);

action

ASSIGN-CARGO[CARGO,TONNAGE,PORT.FROM,PORT.TO]

definition

begin
require 3ship || ship : PORTOFCALL = port.to;
MOVESHIP{ship a pier || pier : PIERLOC = port.from];
LOADSHIP[ship,cargo,lonnage]

end

Figure 2-1: Action Declaration in Gist

ACTION DECLARATIONS 2.19

The body of an action definition is constructed trom the primitive statements of Gist and forms for
combining them into complex process descriptions. The first action declaration defines an action
named MOVESHIP. The action has two parameters, of types "ship" and "pier".s This action is
intended to represent the activity of relocating a ship at a given pier in a port. The definition is a
simple conditional. If the ship is already docked at the indicated pier, nothing happens; otherwise, the
berth of the ship is "updated” to be some (unspecified) slip.

Tnis is an inadequate definition of the intended activity, for two reasons. First, it fails to restrict
.which ships can be moved to a given pier. The intentis that MOVESHIP is describing activity within a
port; it is not to be used to relocate a ship across thousands of miles. This deficiency is overcome by
the use of a precondition that states the desired relationship between the ship and pier used as
parameters--namely, that the ship must be in the port in which the pier is located.

The second problem is the non-determinism of the slip chosen as the new berth for the ship.
Centain referents of the expression "a s/ip” wili not achieve the intent of this action, which is to
relocate the ship at the indicated pier. A more restrictive expression could be used (restricting the
referents to slips at the desired pier) or, as in the example, the same goal can be achieved with a
postcondition stating that, when the action is completed, the ship's dock must be the desired pier. in

either case, it is unnecessary to incorporate in this action the restriction that only one ship may be in a
slip at a time. That was stated as a global constraint on the attribute "BERTH", and thus serves to
restrict the non-determinism in this action. Any attempt to invoke this action in a situation in which
there are no empty slips at the desired pier would be anomaious, as would an attempt to use it with a
ship and pier not satisfying the precondition.

The second action, LOADSHIP, is intended to capture the change of process state which occurs
when cargo is added to a ship. In this case, all that is modeled is an update of the tonnage of the
given cargo on the ship, so that the new tonnage in the relation CONTAINS is the sum of the previous
tonnage and the increment loaded (or just the increment loaded if the ship did not contain any of the
giveri cargo). To capture the intended restriction in our domain, a precondition requires that the ship

be docked at a pier which handles the specified cargo.

Firally. the action ASSIGN-CARGO captures the process of getting a specified tonnage of a given
cargo loaded onto a ship bound from one port to another. The body of this action begins with a

81’r'ne rules for naming and giving the type of formal parameters of actions are the same as the rules used everywhere eise in
Gist for variebie and role names. ’

2-20 GIST SPECIFIER'S MANUAL

requirement that there be some ship having the target port as a port of call. it then uses the
previously defined actions to move any such ship to any pier in the source port, and to load the cargo
onto the ship. In this example, both the ship and pier are specified by descriptive references which
are likely to have multiple referents. The giobal constraints together with the preconditions and
postconditions of actions combine to restrict the non-determinism allowed by the definition alone.
Thus:

* the ship selected would have to be located in the source port. (Precondition of
MOVESHIP)

* the pier selected would have to handle the indicated cargo. (Precondition of LOADSHIP)

* the pier selected would have to have at least one unoccupied slip. (Global constraint on
the "BERTH" attribute)

* the ship selected would have to be capable of carrying the indicated cargo (Global
constraint(s), such as the non-mixing of fuel and grain cargos)

-Clearly, the specifier has considerable leeway in Gist in defining the dynamics of a process. It can
be done with the method used in programming languages--making every reference (sufficiently)
deterministic within its local context so that the global behavior proceeds as desired. The specifier
can also use greater non-determinism in his referring expression, but bound his action definitions
with preconditions and postconditions which ensure proper global behavior. Finally, the specifier
may use global constraints to restrict the non-determinism present in his action definitions. The
remainder of this section desctibes the variety of constructs which may be used to compose action
definitions.

2.8.1 Primitive Statements

The primitive statements of Gist permit classification and declassification of objects, addition and
deletion of attribute values, addition and deletion of relationships, and creation and destruction of
objects. In each case, the primitive statement specifies a transition from a state S to a state S’. with
no intervening states. In many cases, the primitive statement may involve some non-determinism,
thereby specifying multiple possible state changes.

2.8.1.1 Object Creation

The create statement specifies the creation of new objects. A single create statement can specify
creating one or more new objects, and establishing relationships among the new obiject(s) and
existing ones. The new objects are created as part of a single state transition. In other words, the

4

ACTION DECLARATIONS 221

create statement specifies a mapping from any state S to state S' that is identical to S except for the
addition of the newly created objects, their classification into the indicated type(s), and the addition of
the new relationships.

For example, the statement

create ship || ship : CAPACITY = 30000,
ship : REGISTRY = USA,
ship : PORT.HOME = Seattle

would specify the creation of a new ship having a capacity of 30000 tons, a USA registry and a home
port of Seattle. The new ship would not be involved in any other relationships initially.

2.8.1.2 Object Destruction

The destruction of an existing object is specified by another primitive statement in Gist. The
“destroy” statement permits the specification, via an object expression, of some object to be
destroyed. If the expression has multiple referents, then one of the referents is destroyed. If it has no
referents, then the destroy statement is itself anomalous. A literal object may never be destroyed.
Destruction of an o'bject means eliminating all classitication of it as an instance of any type, and
removing all relationships involving it. This in turn means that a process has no way of referring to an
object tollowing its destruction except through variablés that already referred to it prior to its
destruction. or by temporal reference (see section 2.8). For instance: '

destroy Seatt/e :: PORT.HOME
would (non-deterministically) eliminate some ship whose home port is Seattle. Following execution of
the "destroy” statement, even the expression "aship” would not have the destroyed ship as a
referent.

2.8.1.3 Adding Relationships and Classifications

Addition of new information about existing objects is accomplished with an “ingert” statement.
The new informaticn may consist of an additional classification for an object or a relationship
between objects. As with the "greate" statement, the relationships are specified by means of
propositions. For example, the statement:

insert CONTAINS(ship,cargo.incr)
would add a relationship between the referents of the variables "ship", "cargo”, and "incr" 10 the
CONTAINS relation. |

An additional classification for an object can also be added by the "ingert" statement:
insert port isa portofentry

2.22 GIST SPECIFIER'S MANUAL

would classify the referent of “port" as an instance of the type "portofent ry“.°

2.8.1.4 Removing Relationships and Classifications

A relationship can be removed by means of the "delete” statement.
delete (g ship) : PORTOFCALL = Seattle
would remove (non-deterministically) some ship from having Seattle as a port of call.

“delete” may also be used, by analogy with “ingert", to declassify an object as an instance of some
type. An execution which would leave an object with no classification, however, would be

anomalous.

2.8.1.5 Updating Relationships

Another useful change of state is the update of a relationship between objects. This has the effect
of removing an existing relationship and adding a new one. The "update" statement specifies the
relationship to be updated, by means of a proposition, the role in that relationship to be altered, and
the new value to fill that role.

update B&RTH of ship 10 a s/ip
would change the slip at which the ship referred to by "ship"” was berthed to a non-deterministically
specified slip."®

update TONNAGE of CONTAINS(ship,cargo $) to tonnage + incr
would change the quantity of the cargo referred to by “cargo” on the ship referred to by "ship" to the
sum of its previous value (referred to by the use of “tonnage" as a variable in the expression giving

the new value) and the amount “incr".

If the relationship in an update does not hold, the update serves to add new information without
deleting anything.11 Conversely, if the relationship to be added already exists. the update statement
serves solely to delete the old relationship. Finally, if the information to be deleted is identical to that

being added. the update statement specifies no change to the process state.

9“ is not necessary that additional classifications be subtypes of existing classifications, although that is the most common
usage.

1°The “new" slip could be the same slip at which the ship was berthed prior to the execution of the ypdate statement.

“In this case. of course, the expression specifying the new object may not use the role name as a variable 1o refer to the
previous object.

;
i
4
LY
2
»
I3
E
’
?
L)
S
$

ACTION DECLARATIONS 2.23

2.8.2 Action Invocation

A defined action is invoked by a statement which specifies the action name and an actual
parameter for each of the action's formal parameters. Each actual parameter is specified by an
object expression. The invocation is non-deterministic, aliowing any referent of each expression to
serve as the referent of the corresponding formal parameter. U any of the actual parameter

expressions is anomalous, then the invocation statement is anomalous.

The invocation specifies the behavior specified by the action’s definition.
LOADSHIP[ship,cargo,tonnage]
indicates the execution of the behavior defined by the action LOADSHIP using the referents of

w o on

"ship"”, “cargo", and "tonnage" as actual parameters.

2.8.3 Compound Statements
Gist provides a variety of compound statements to permit specification of:

» Sequential state changes. A process encompasses multiple state transitions. not just a
single transition from an initial to a final state.

» Conditiona! state changes. How a process alters a state may be conditioned by the state.

» Alternative state changes. The activity of a process may be non-deterministic in certain
situations.

The statement syntax of Gist includes forms for specifying such state changes.

2.8.3.1 Conditional Behavior

The conditional statement permits selection of an activity based on the current process state. The
simplest form of conditional statement consists of a predicate together with a statement to execute if
that expression is TRUE and/or a statement to execute if it is FALSE. In addition to conditioning the
behavior, the conditional statement may produce an augmented variable reference environment for
the selectad statement. If the predicate is TRUE subject to some assignment of values to variables
(see section 2.7), the “then statement” is executec with that assignment augmenting the previously
existing variable assignment. Analogously, if the predicate is FALSE subject to some assignment of
values to its variables. the “else statement” is executed in an augmented variable context. Since
there may be multiple distinct assignments subject to which a predicate is TRUE, or multiple
assignments subject to which it is FALSE, the augmented assignment may be non-deterministic. If
the predicate is TRUE, but the “then statement” is anomalous for all assignments which make it
TRUE, the conditional statement is itse!i anomalous. Anatcgously. if the predicate is FALSE but the

2-24 GIST SPECIFIER'S MANUAL

"else statement” is anomalous for all assignments which make it FALSE, the conditional statement is
anomalous. For example,

if 3 ship || CONTAINS(ship, Wheat, g tonnage || tonnage > 5000) A
INPORT(ship, Seattle)
then insert ship : PORTOFCALL = port
else ASSIGN-CARGO[Wheat, 5000, Seattle, port]

would test whether there was a ship in Seattie which contained at least 5000 tons of Wheat. If so,
some such ship would get the referent of "port” added to its ports of call. If not, the action ASSIGN-
CARGO would be invoked to load wheat onto a ship in Seattle bound for that port. if there were one
or more such ships in Seattle, but (because of constraints) it was not possibie to assign the new port
of call to any of them, then the if statement itself would be anomalous.

2.8.3.2 Sequential Behavior

As in most programming languages, the sequential execution of distinct statements is specified by
a block statement, which is simply a sequence of statements bracketed by "beqin” and "end". The
iexical order of appearance of individual statements in the block specifies the order of statement
execution, each statement being executed in the process state resulting from the execution of its

predecessor. ‘

2.8.3.3 Point Invariants

The primary restriction of non-determinism in Gist specifications arises from the various forms of
constraint declaration, which preclude otherwise permissible executions. The declared constraints
restrict non-determinism throughout their scope; they are not tied to any particular state of the
process. Point invariants specify conditions which are required or prohibited only at particular states
of the process. While point invariants appear in Gist as statements, they do not specify any state
transition. They limit non-determinism in a specification by being anomalous if executed in a state in

which the predicate is FALSE (in the case of a requirement) or TRUE (in the case of a prohibition).

Point invariants serve a second purpose in a Gist specification. When the invariant is satisfied,
(one of) the variable assignment(s) subject to which the predicate was satisfied augments the existing
variable assignment for the remainder of the lexical scope in which the point invariant appears. A %
given point invariant may be included in a specification for either of these two purposes--limiting non-

determinism or augmenting variable assignment--or for both purposes.

For exomple, the point invariant:
require 3ship || ship : PORTOFCALL = port.to

L2

|

ACTION DECLARATIONS 2-25

appearing as a statement would make anomalous any execution which reached that control point in a
state in which no ship had the referent of "port.to” as a port of call. If there were such ships,
however, there would be one continuation of the execution for each such ship. In each continuation,
the variable "ship” would refer t0 the corresponding ship for the remainder of the lexical block in

which the point invariant appears.

2.8.3.4 Alternative Behavior

Much of the non-determinism in a process is specified through use of non.deterministic object
expressions in predicates and as actual parameters of actions. Non.determinism also results from the
use of quantified variables in predicates which establish referents for those variables. However, non-
determinism does not always factor so nicely, as in the English exampie "Either buy a second car or
move closer 1o work™. The choice block permits this kind of specification. The choice biock specifies
execution of any one of the statements in the block. The lexical order in which the statements appear
has no significance. If every statement in the block is anomalous, the choice block is itseif
anomalous.

begin
require 3 ship || ship : PORT.HOME = Seattle:
choose :
destroy ship;
update PORT.HOME of ship 10 a port || port # Seattle
end choose
end

The above example specifies either of two possible transitions: a Seattle based ship is either to be
destroyed or assigned a new home port.

2.8.3.5 Preferential Behavior

A situation which is similar to aiternative behavior is one in which multiple alternatives are possible,
but these alternatives can be ordered by preference. An English example is "Try to move closer to
wo-k, but if that isn't possible, buy a second car”. This is expressed in Gist by a preference block.
The preference block permits a specification to "contro!” the effect of anomaly. [t specifies the
execution of the first (in order of lexica! appearance) statement in the block which is not anomalous.
Which statement this is is in general dependent on the current process state. If every statement in the
block is anomalous, then the preference block itself is anomalous.

beqin
require 3 ship || ship : PORT . HOME = Seattle;
attempt
update PORT.HOME of ship 10 a port || port # Seattie;
destroy ship -

2-26 GIST SPECIFIER'S MANUAL

end attempt
end

This example is identical to the "ghoose" block above, except that the order of statements in the
"attempt” block is significant. In this case, we have specified a preference for reassigning the ship
over destroying it.

2.8.3.6 Non-primitive Granularity

The domain mode! of typed objects and associations has a "basic" processing granularity. The
.primitive transitions at this level are ingsert, delete, LLM create, and destroy. The ideal process
being specified, however, may have a coarser granularity. That is, some conceptually indivisible state
transition in the ideal can only be described in terms of multiple primitive transitions.

This issue must be faced in the specification language because domain constraints, temporal
reference, and demon triggers are naturally defined with respect to states of the ideal process. But
independent of this it is important to capture the granularity of the idea! process in the specified
process. The primary reason for this is the enhancement of maintainability. Adding a new constraint
or demon to a specification with the wrong granularity will not yield the desired new specification.

Rather than indicating when (particular) constraints and demons are to be checked, the specifier
should define indivisible database transitions matching the granularity in the idea! process. The
resulting specification will define a process having no spurious intermediate states.

In Gist, non-basic granularity is specified by enclosing multiple statements within "atomic" ... end
atomic”. The collection of individual transitions specified by the bracketed statements specifies a

single, indivisible state change. For example, a ship's home port and country of registry could be
simultaneously changed by:

tomi

update REGISTRY of ship to country.new,

update PORT.HOME of ship {Q port.new
end atomic

2.8.3.7 Rerative Behavior

The iteration statement consists simply of a “generator” of the objects over which the loop runs
and a body, a statement which is executed on each iteration. There are two distinct types of iteration
in Gist: iterations over the changing state of the data base and iterations over the state of the data
base before the iteration begins.

ACTION DECLARATIONS 2-27

To understand this distinction, consider the foliowing (ambiguous) sentence: "Move ships so that
every ship in port containing corn which is not at pier.2 is relocated there.” The ambiguity (of interest
in this section) is that of whether it is intended to achieve a state in which a// ships containing corn are
at the indicated pier, or if just those not originally there are to be relocated.

The basic distinction between the two iteration types is whether the predicate is applied to the
initial state (before the iteration begins) or whether it applies to the (potentially altered) state at the
start of each repetition. in the first case:

100D 3 ship || INPORT(ship,port) A
CONTAINS(ship, Corn, $) A
ship : DOCK # pier.2

do

attempt
MOVESHIP[ship, pier.2];

beqin
MOVESHIP[a ship, a pier];
MOVESHIP[ship, pier.2]
end
end attempt
This iteration would (if possible) move all ships containing corn and not initia/ly located at pier.2 to

that pier. They would be moved one at a time, in an unsp=cified order. If possible, a ship would
simply be moved to the pier, without disturbing other ships. If necessary, however, some ship could
be moved to make room for the new ship. Since the ship being moved could we!ll be one which
contains corn (including one moved to the pier on a previous iteration), there is no guarantee that the
loop terminates with all ships containing corn at the pier. 1t is only guaranteed that each will have

been at the pier during one of the iterations.

If the word “1opp" is replaced by the word "while”, the other iteration semantics obtains:

while 3 ship || INPORT(ship,port) A
CONTAINS(ship, Corn. $) A
ship . DOCK # pjer.2

do
attempt
MOVESHIP[ship, pier.2);
begin
MOVESHIP[g ship. 8 pier];
MOVESHIP[ship. pier.2]
end
end attempt
In this case, a new ship is computed at the beginning of each repetition. The iteration will terminate

as soon as, but not before, all corn carrying ships are docked at pier.2.

2.28 GIST SPECIFIER'S MANUAL

2.9 ADVANCED TOPICS

Gist contains several important specification concepts not covered in this introductory manual. In

this section, the most prominent of these are mentioned.

2.9.1 Sets and Sequences

The concepts of set and sequence are primitive to Gist. Expressions can be written whose
referents are sets or sequences of objects of some type. The elements of sets anc sequences may
themselves be sets or sequences. The need for sets is rarely felt in Gist, because non-deterministic
expressions can be thought of as referring to "sets”. Sequences, however, are needed to specify
certain kinds of ordering information.

2.9.2 Mutitiple Lines of Control

Gist has a concept called "agent” which permits specification of processes which involve multiple
lines of control. An agent is composed of a collection of actions, which specify that agent's
"capabilities”, and g collection of "demons"”, each of which specifies how the agent behaves in
response to changeé in the process state. For example, each port might be an agent in the ship

domain, reacting to the arrival of ships at the port and to new purchase orders.

2.9.3 Temporal Reference

As a process executes, information is being produced and consumed. In writing a program to
perform the process. a programmer must be concerned with the storage space required to hold this
information. Programs manifest this concern by using compact or implicit representations of
information. by representing onily that information essentia! to correct execution, and. most
pervasively. by releasing space used to store information that is no longer needed.’? in a
specification language. however. there is no reason to be concerned with storage space as a finite
resource. As a process executes. the current collection of objects and associations changes, to be
sute. But the history of execution and database states is conceptually well defined, in the sense that
expressions and predicates can be assigned natural meanings with respect to past times as well as

with respect to the current state. Gist permits reference to non-current information by means of

12Prowammino languages include facilities, such as block structure and garbage collection, which help the programmer
dea! with this storage aliocation problem More importantly. as we shall see, programming languages simply do not provide
certan rich constructs, whose counterparts are available in natural language, that would make the storage aliocation problem
too difficult for current compiler capabilities.

ADVANCED TOPICS 2-29

relerence to past process states. This in turn is accomplished by allowing predicates to be used to
reference past states in which they were true, and by permitting reference to intervals of states which

constitute events.

2.9.4 Boundaries

Gist permits the specification, by object type, of the "extent" of an object--that is, what other
objects are an inherent part of the object. This permits the specifie. to tailor, for each type, the

semantics of high level concepts like destroy, object @2quivalence, and containment.

2.9.5 Orderings

Gist also permits the specification of “orderings” on objects. A rich sublanguage is provided for
this, so the specifier does not have to “implement" the concept in terms of something more generat.
Once defined, the orderings can be user! for comparing objects (just as numbers can be compared

because they have a predefined ordering), and for controlling the execution order of iterations.

2.9.6 Meta Concepts

Collections of declarations may be named and parameterized, and then later specialized to a

particular purpose. This permits the definition of high-level concepts iike “iabelec binary tree™.

31

3. GENERAL APPROACH TO WRITING GIST
SPECIFICATIONS

While it is not possible to give step-by-step instructions for the construction of a Gist specificaton,
an outline of the usual approach should enable a Gist novice to avoid being overwheimed by the task.

The basis of Gist is a simple underlying modeling structure: objects and relationships among them
in the task domain are modeled by objects and relations in Gist (a relational database-like model).

- Change within the world is modeled by creation and destruction of objects, and by insertion and

deletion of relations. Thus Gist specifications are fundamentally operationa! in nature. Gist's
expressive power derives from the features built upon this underlying model.

To determine an appropriate set of object classes and relation names, a natural language
description of the target process will prove useful. The description will be used only as a guide in the
initial stages of development and need not be complete, detailed, nor even consistent.’® This

linguistic description will serve basically as a guide to the terms which need to be defined in Gist.

3.1 IDENTIFYING TYPES AND SUBTYPES

The first task of a specitier is to decide on a collection of object types that will capture the important
objects, or values, that the process manipulates. A good rule of thumb is to consider common nouns

(particularly concrete nouns) appearing in the linguistic description as the names for object types.

Although the coliection of type names thus derived will likely need augmentation later, it should
provide a solid basis for further development. At this time, it is also a good idea to identify any of
these type names which are used to describe sets or sequences of other named types.

In any sizable application domain some names will refer to large classes of objects and other
names to subsets of the same objects. Although often the verbal names used for types give no clue to
these supertype connections, certain patterns should be considered. Noun pairs, such as "cruise
ship”, are frequently used to name subtypes of the second noun, as are compound nouns. Adjectives
frequently are used with nouns in the same way, as in "military vessel”. It is important to identify not
only which classes include which others, but which sets of classes are disjoint and which overlap
without strict inclusion. Often the use of Venn diagrams will prove helpful in this chore.

13For a serious software development project, of course, a good natural language specification is important. In this section,
however, we are assuming that the specifier understands the process he wishes 1o specify quite clearly, but is unfamiiar with
Gist.

32 GENERAL APPROACH TO WRITING GIST SPECIFICATIONS

3.2 IDENTIFYING INDIVIDUALS

In order to fully describe a process, it is sometimes necessary to refer to individua! objects (values)
as well as to entire classes. The names of individuals may be freely chosen by the specifier, but the
type to which each belongs must be declared.

Linguistic clues that indicate the need for declaring individual instances of types include the use of
proper nouns, mass nouns, and collections of adjectives (like color names) used to modify the same
type names. These distinguished individuals are those which are used somewhere in the descr.ption
of process activity or of constraints in the domain. They are not used for the purpose of describing
“test data” for some test of specificaton behavior. A specification may have no such individuals.
Even where they are necessary, it may not become apparent until later stages of development, when
they are needed to describe the dynamic aspects of the process.

3.3 IDENTIFYING RELATIONS

The second major task of a specifier is to determine the interesting ways in which objects in (he
application domain can be related to one another. In describing a process in English, we use specific
vords and syntax to describe the ways objects are related to one another. In “ship bound for
SantaBarbara" the phrase "bound for" indicates a particular relation that can hold between ships
and ports--namely, a ship can be scheduled to go to a particular port. “A ship based in
SantaBarbara" uses a different phrase, "based in", to talk about a different relation between the
same two types. "A ship containing 50 tons of wheat" indicates yet another relation in this domain.-

ships may contain specific quantities of specific cargos.

In other cases the only linguistic indication of a relation will be a purely syntactic connection, such
as the use of possessive noun phrases or prepositiona! phrase moditiers. The specifier must choose
a distinct name for each distinct relation. It is generally wise to keep type names and refation names
distinct. For each named relation, the specifier shouid identify the most general named types which
can be related by that relation.

3.4 IDENTIFYING DERIVED CONCEPTS

The next step is to look for any identified relations which can be defined in terms of other named
relations (possibly by recursive definition), and for identified types which can be defined in terms of

other types and relations. These situations provide the basis for derivation rules in Gist. In some

- IDENTIFYING DERIVED CONCEPTS ‘ 3-3

cases, pairs of relations will be found where either could be defined in terms of the other. A
particularly common case of this is where the two relations are inverses of one another. It is usually
best to define both refations in terms of some more neutrally named relation.

3.5 IDENTIFYING STATIC CONSTRAINTS

The declaration of types and relationships lays out a wide variety of possible process states--that is,
states containing collections of instances of those types and relationships between objects of
appropriate types. However, it is nearly always obvious that many of these states may never really
arise. Sometimes this is because of physical constraints in the process domain. In other cases, it is
not physical reality, but the desired process which restricts the potential states. In either case, it is
wise to identify these constraints at this stage of development.

i In choosing what constraints are worth stating explicitly, a verbal process description is of limited

’ use. Some constraints may be expressed verbally, but many are such "common knowledge" that
they are left unstated. A specifier can state any obvious constraints which come to mind before
working on the procedural portion of his specification. But he should be on the lookout for situations

where he is writing procedural specification for the purpose of "avoiding”™ a problem. A particularly
common kind of constraint which can generally be identified at this stage is a "cardinality" constraint.
For each binary relation R relating types T1 and T2 (not necessarily distinct). consider how many
instances of T2 may be related in R to a single instance of T1, and vice versa. Sometimes there will be
only a lower bound on the number, sometimes an upper bound, and often both. When a relation is a
function, the upper bound will be 1. If it is total, the lower bound will be 1. One should also determine

if there is a more restrictive cardinality restriction on R when considering subtypes of T1 and T2.

3.6 IDENTIFYING ACTIONS

The information gathered in these steps provides the basis for expressing, in Gist declarations. the
static structure of the application domain. Any application domain will also have a variety of activities
carried out by processes in that domain. These activities change the state of the process in some
L way. They may create or destroy domain objects. change object relationships, or classify or
declassify objects. Furthermore, the execution of an action serves to "mark time" in the process,

each action execution being an "event” in the process history. The linguistic process description can

1‘Unimately the entire specification may be conveniently writien in terms of the more neutral relation without any reterence
1o the derived terms

- \ . Iﬂi ‘

3.4 GENERAL APPROACH TO WRITING GIST SPECIFICATIONS

serve as a guide to the actions which need to be defined. In general, transitive verbs and nominalized
verbs indicate some action which needs to be defined. For each action, the specifier should
determine the types of objects on which the action can operate, any "preconditions’ on such objects
which restrict the situations in which it is appropriate to perform the action, and a statement of how
the action changes the process state.

3.7 IDENTIFYING DYNAMIC CONSTRAINTS

A more difficult class of constraints on a process consists of conditions restricting allowable
change in the process state. Identifying these, like identifying static constraints, can make the
specification both easier to understand and easier to construct correctly. The simpler forms of such
constraints to look for are restrictions prohibiting change in certain relationships involving objects

following their creation. or restricting the nature of such change.

3.8 IDENTIFYING ACTIVE PARTICIPANTS

In most large systems. it is natural to think of the behavior as being produced by the interaction of
multiple participants, or agents. These agents are often themselves objects in the application
domain, and thus can be classified by the same means used for non-active objects. For each agent
class. the specifier should attempt to identify the named actions which are performed by agents of
that class.

3.9 PROGRESSING IN COMPETENCE

Alter following this approach in the specification of a few simple processes. the specitier will
become sufficiently familiar with the fundamenta! concepts of Gist to intermix the gathering of
information about his application domain with the encoding of that information in Gist. He should
a'so feel free to be less rigid about the order in which information is gathered and encoded. These
steps are illustrated in the next chapter, particulary in the first example.

et .
it el

4-1

4. CONSTRUCTING GIST SPECIFICATIONS

in this chapter we wish 1o illustrate our approach to writing Gist specifications (as described in the
previous chapter) through three examples. These examples are all real, moderate-sized systems
chosen to demonstrate the applicability of Gist to a wide range of military applications. For each of
these examples we describe the system 0 be specitied and how we applied the Gist approach to
specification writing to formulate these specifications. The description of the application of our
approach to specification writing is most detailed for the first example.

The actual Gist specifications for these examples can be found in Appendix Il

4.1 SOURCE-DATA MAINTENANCE EXAMPLE

The task we are about to specify was chosen to be a test of the existing features of Gist, to suggest
the need for additional features, and to promote development and recognition of principles of "good
practice” in the construction of specifications. The size of the task, whilst still small in comparison to
many real-world activities, is larger than "toy" examples. As such, we begin to see how the difficulty
of constructing and understanding specifications in Gist grows with the scale and complexity of the
task.

The example we specity is taken from [4]. It is concerned with maintaining programmers’ source
code. where the code is arranged into a hierarchica! structure of units, files, libraries and projects.
The user issues a batch sequence of commands to create, modity, and destroy portions of this
structure. Figures 4-1 and 4.2 summarize the structure of the domain and the user commands to be

supported.

The description upon which we base our specification consists of 16 pages of English text, plus 9
pages of "HIPO" diagrams which graphically depict input, functional processing, and output of the
system. Our intention was not merely to formalize the English description, but rather to specity
formally the desired behavior of the source-data maintenance system implied by the English. The
crucial difference is that we regard the English description as being biased in many places towards a
particutar implementation. The disadvantages of this bias are that it compromises one's ability to
perceive the desired behavior as opposed to the chosen implementation, and as a result some
portions of the English specification are wrong (in the sense that although it is a specification, it is
clear that the behavior implied is not the behavior intendéd). some are ambiguous, and some
important details are left unstated, and that it overly constrains the implementation.

4.2 CONSTRUCTING GIST SPECIFICATIONS

Gnit-accounting-rec@

character
(sequenc@ character

character

sequence f

f'\

"‘.

Figure 4-1: Structure of source-data maintenance domain

4.1.1 Suppressed details
Before we commence description of our specification, we make explicit those features we have

chosen not to specify. These fall into three classes:

1. Implementation details. From our earlier comments, it comes as no surprise that we
. should suppress details of this nature. Examples of such suppression include

* Data compression by removal of blanks when writing code to disc (this would be a
constraint upon an implementation for an environment short of space);

* Unit Accounting Records which package together information about units (in fact
they are merely a convenient implementation package, not objects that the user
observes).

Of course, when directing the implementation of a speciﬁcation we will wish to constrain
the implementation choices in some ways. To do this we would provide such constraints

SOURCE-DATA MAINTENANCE EXAMPLE 4.3

gommand name RUrpose

UPDATE Maintenance of existing files

subcommands of UPDATE:
ADD Add a new unit

; PURGE Remove 8 unit

REPLACE Replace the contents of & unit
COPY-UNIT Copy a unit
CHANGE ‘ Maintenance of existing units

subcommands of CHANGE:

INSERT Insert 1ines into unit
DELETE Delete lines from unit
SHIFT Shift characters left or right on line(s)
MODIFY Modify line(s)
COPY-LINES Copy lines into unit
+ explicit insertion/deletion of numbered lines
COPY-FILE Copy file across project
BACKUP Preserve for later restoration projects,

libraries, files or units

RESTORE Restore preserved state of projects,
Tibraries, files or units

Figure 4-2: User commands supborted by the system

separate from the specification of the functional behavior, which itself leaves maximum
treedom of choice to the implementor.

2. Interface details. We aim to specify the desired behavior independent of the interface
with the external world. This is accomplished by modeling the relevant portions of the
external world as another (incompletely described) participant with whom interactions
occur via the standard intermal communication mechanisms. As part of the
implementation of such specifications, external interfaces are chosen and the mappings
between the external and internal representations defined. Such concerns should not
compromise the clarity of the functional specification. This leads to the suppression of

* the precise format of incoming commands (we assume that we receive a sequence
of objects of type command);

* the identification of objects in the world by alphanumeric names (we assume that
the commands provide a reference to the object they are associated with, just as all
modeled objects provide references to other objects through relationships);

* identification of lines by sequence numbers (again, we assume that the commands
reference the lines in question directly).

Naturally. any implementation will obviously have to take into account these
requirements. which we would state separately.

4-4 CONSTRUCTING GIST SPECIFICATIONS

3. Refinements. We concentrate upon specitying the “normal-case” behavior of our world.
For example, although our specification must trap all error conditions, explicit provisicn
of diagnostic error messages for all the cases is detail we wish to suppress for the time
being, and would provide as a separate refinement of the normal-case behavioral
specification.

4.1.2 Plan for Corstructing Source-Data Maintenance Specification

As described in the previous chapter on writing Gist Specifications, a specification is organized to
present the features of the task being modeled iin a comprehensibie manner. This organization is
repeated below, particularized by the features of the source-data maintenance domain.

1. Define the object types and relations to model the objects of the domain (projects,
libraries, files etc.) and the relationships amongst them (e.g., files are related to libraries).

As we make these definitions we may conveniently express some of the constraints of the
domain (e.g.. that every file belongs to precisely one library).

2. Define the "static" constraints on our domain.-static in the sense that these constrain the
state of objects and relations at every point in time without reference to their history (e.g.,
lines in units are of length Card-Length).

3. Define the types and relations to mode! the internal interface with the environment (user
commands).

4. Define the actions which change the state of the worid.

5. Define the “"dynamic™ constraints on our domain--dynamic in the sense that these
constrain how the world may change from state to state.

6. Model the active participants of the domain who react to certain stimuli in the world and
respond by invoking actions to appropriately modify the worid.

This organizaticn is convenient both as a framework to aid understanding of the specification and

as a framework to introduce the Gist language features.

4.1.2.1 Modeling objects and relationships of domain

Figure 4.3 illustrates the modeling we aim to achieve at this stage. Objects and relationships
among them within the task domain are modeled as objects and relationships in the specification
domain. Files libraries, etc., are modeled as distinct objects connected by relations. This simple yet
powerful basis allows us to model task domains in a very direct fashion.

The objects are typed. so our first definition is that of the types of objects of the domain, alter which
we will define the relations linking them. E.g.:

A PR Sdnd

SOURCE-DATA MAINTENANCE EXAMPLE 4.5
project
PROJECT- PROJECT-
CLASSIFICATION Ll

classification

LIBRARY-
FILE
file
PASSWORD-OF-FILE FILE-UNIT

password unit

Figure 4-3: Modeling of objects and relations in Gist
tvpe project; type library; type file; type unit;
relation PROJECT-LIBRARY (PROJECT | project , LIBRARY | library});

defines PROJECT-LIBRARY to be a relation between an object of type project and an object of
type library. Each position in the relation definition is filled by <identifier> | <type>. where identifier is
an arbitrary name. By convention, when the identifier is the name of the type, the identifier alone
suffices. E.g.:

retation PROJECT-LIBRARY (PROJECT,LIBRARY);

The relations are not restricted to be binary, nor do they have any inherent directionality (i.e., it is
possible via PROJECT-LIBRARY both to derive from a project a library, and to derive from a library a
project).

4.1.2.1.1 Notation for types and binary relations

Often we have occasion to define many binary relations, as is the case in our example. For this

purpose a convenient notation permits the simultaneous definition of a type and binary relations it
participatesin. Eg.

tvpe project(LIBRARY , CLASSIFICATION);

declares project to be a type. and declares two binary relations which connect projects with libraries
and projects with classifications. We refer to LIBRARY anc CLASSIFICATION as the attributes of
project. Note that there is a degree of freedom in choice of which type to make the attribute of the
others: in the above case we could just as easily have made project be an attribute of libraries. This is
purely a matier of taste (remember that we are using a notational convenience for the underlying type
and relation definitions, which themselvés have no preferred directionality) and should be made to

A g
-

-

4-6 CONSTRUCTING GIST SPECIFICATIONS

most closely conform to the accepted conceptualization of the domain (i.e., improve
understandability). The notation supports extraction of information through attribute relations, e.g.:

to denote a classification related to project p (i.e., going
downhilf in Figure 4-3) we would write
P:CLASSIFICATION

similarly, to denote a library relaied to project p (again
going downhill in Figure 4-3) we would write
pLIBRARY

but, to denote a project related to library / (i.e., going

uphill in Figure 4-3)

[:LIBRARY
("::" to go from attributee to attributor)
The "::" notation is easies: to remember in terms of the following rule

if p:LIBRARY = |

then

I::LIBRARY = p

The "::" notation should be read as "the object which has / as its LIBRARY attribute™.

Last, we may also incorporate into this notation some simple constraints on the participation of
objects in such relations (over and above the implicit constraint by type). For example, within our
domain every project is related to exactly one classification. Similarly. every library is related to
exactly one project. However, a project may have any number (including 0) of libraries related to it.
These constraints--all restricting the number of objects that may participate in relations--can be
erpressed within our type/attribute notation. To constrain how many objects of the attribute type
may be attributed to a single object of the defined type, we follow the attribute name with *." and an
appropriate keyworc. Similarly. to constrain how many objects of the defined type may share as an
attribute a single object of the attribute type, we follow the attribute name with "::" and an appropriate
keyword. Our choice of keywords includes any (no restriction), unigue (precisely one), multiple (one
or more). and optignal (zero or one). E.g.:

lvpe project(LIBRARY :any ::unigue , CLASSIFICATION :ynigue ::any);
(The use of ":" and "::" is intended to paralilel their use in expressions, so just as "p:LIBRARY"

denotes a library attributed to p, "project(LIBRARY :any ..." constrains how many libraries may be

attributed to a project.)

One final remark befare we show the definitions for our-example is to state defaults for these

constraining keywords: we have chosen to let omission of ":" and following keyword to be equivalent
10 :ynigue, and omission of "::" and following keyword 10 be equivalent to ::any.

Ny

SOURCE-DATA MAINTENANCE EXAMPLE 4.7

4.1.2.1.2 Type and attribute definitions for the domain

We define here the types and attributes for the domain of the example specification:

iype project(LIBRARY :any ::unigue , CLASSIFICATION):
type library(FILE :any ::pnigue):
type file(UNIT :any ::ynigue ., PASSWORD :gptional);

type unit(UNIT-CONTENTS | sequence of line , UNIT-KEY | key :optiongl ,
SOURCE-LANGUAGE | language :optional);

iype line(cHARS | sequence of character , LINE-INCLUDES-UNIT | essence of unit :any)

ivpe fanguage(): type key(); type classification(); type password();
Two remarks on the above:

Notation: sequence of is a built-in type constructor. An object of type "sequence of t" (where t is
some type) i$ a sequence of objects of type t. In the following examples we shall see notation to allow
construction, modification and interrogation of sequences. Other type constructors are get anc
multiset. Sequences, sets, and multisets are included in Gist because of the convenience they
provide. They are built-in parameterized types. In contrast, user-defined types may not be
parameterized in Gist. This restriction does not appear to be a drawback, at feast in the examples we
have considered. We believe our specification style circumvents the need for such power, since our
objects are atomic, gaining their definition from their relation to other objects. This is against the
trend of modern typed languages, in which the user objects are complex entities having structure and

values.

The LINE-INCLUDES.UNIT attribute of line models the ability to include notionally a unit at that line's
location by referencing the unit (so that for compilation, listing etc., the effect is as if the contents of
the referenced unit were included at that point). Because the source-data maintenance system is
intended to support top-down programming, it must be possible to "include” a unit which does not
yet exist. Gist permits references to objects that may not yet exist (or may no longer exist) by
declaring such references to be of type "essence of t", where t is the type of the object being
referenced. as used above in the type definition for line.

%
;
i

4.8 CONSTRUCTING GIST SPECIFICATIONS

4.1.2.2 Static constraints

We use constraints in specification to state concisely and explicitly all the constraints that the
model, in reflecting the world, must satisty. We saw in the previous section some simple constraints
on how objects could fill relations. A more general laﬁguage construct permits the use of any
predicate as a constrain® which must always be satisfied. If we think about implementation, this may
imply considerable expense in checking constraints every time the world changes in a way that might
violate them. In implementing constraints we probably would want to distribute appropriate éhecks

throughout the code at alt potential violation points. During specification, however, it is better to state

“the constraint just once; and this aids understandability, reliability and maintainability {having stated a

constraint, we are assured that the specified behavior must always satisfy that constraint. even if we

modify or introduce new activities).

4.1.2.2.1 A "static" constraint

A constraint of the source-data maintenance world is that
"Alllines within the unit-contents of a unit must be of length Card-Length.”

This we express by

alwevs required
VY line || 3 unit.integer || MEMBER(unit: UNIT-CONTENTS ,integer,line)
= (length(l/ine:CHARS) = Card-Length };

This exhibits some of our notation in use. We follow the convention that

- ynderlining denotes "reserved words" of Gist

- boldlowercase denotes type names

- SMALLCAPITALS denotes attribute names

- fowercase itefics denotes variable and parameter names

- BOLD UPPER CASE denotes names of relations, actions and derivations
- IMixed Case lialics denotes objects referred to literally

in the above exampie. always required introduces a predicate which must be true in every state of
the worid. The predicate in this case is a quantification over all objects in our world of type line.
MEMBER is a ternary relation among a sequence, a location within that sequence (specified by a
positive integer) and the object at that location. Thus for all lines in our world, for those that are in the
unit-contents (a sequence of lines) of any unit. their character sequence (extracted by taking the
:CHARS attribute) must be of length Card-Length.

We have a shorthand which simplifies writing a predicate of the form 3 <variable> || ...<variable)...
where the variable occurs onfy once in the scope of the existential. The shorthand consists of
omitting the "3 <variable> ||", and writing $ in place of the variabie in the body. So the body of the

above constraint becomes

SOURCE-DATA MAINTENANCE EXAMPLE 4.9

V line || MEMBER(S:UNIT:CONTENTS,S,line)
=> (length(/ine:CHARS) = Card-Length)

4.1.2.2.2 The use of derivation

A second example of a constraint in our world concerns the "line-includes-unit” relation, the
means by which a line within the unit-contents of a unit may reference another unit. The intended use
of this is that during compilation, listing etc., the contents of the referenced unit be included at the
location of the line. The constraint we wish to impose is that such inclusion may not be circular (with

the obvious meaning).

To express this constraint, we build in stages. First, for convenience, we define a new relation
UNIT-INCLUDES-UNIT which relates unit-a to unit-b whenever unit-a contains a line "including”
unit-b. Second, we form the transitive closure of UNIT-INCLUDES-UNIT. Last, we express the
constraint by simply prohibiting self inclusion (since any circular chain will have led to derivation of
UNIT-INCLUDES-UNIT between a unit and itself). To define the new refation we make use of a Gist
construct called a derivation, which is a means of automatically inferring some relation to hold
whenever a predicate holds. E.g.:

relatipn UNIT-INCLUDES-UNIT(INCLUDOR | unit , INCLUDED | unit) ;

derivation DERIVE-UNIT-INCLUDES-UNIT(unit-a | unit , vnit-b | unit)
whenever 3 /ine || MEMBER(unit-a:UNIT-CONTENTS , § ,line) N\
(/ine:LINE-INCLUDES-UNIT = unit-b)

conclude UNIT-INCLUDES-UNIT (unit-a,unit-b) ;
unii-a unit-b
UNIT-CONTENTS LINE-INCLUDES-UNIT
o line / \
04 \3
seguence of .
line .
UNIT-INCLUDES-UNIT
unit-a 0~ —0 Unit-b

To form the transitive closure of UNIT-INCLUDES-UNIT we say

410 CONSTRUCTING GIST SPECIFICATIONS

derivation DERIVE-TRANS-CLOSURE-UNIT-INCLUDES-UNIT(unit-a | unit , wuni-c | unit)

whenever 3 wunit-b | unit || UNIT-INCLUDES-UNIT (unit-a,unit-b) A
UNIT-INCLUDES-UNIT (unit-b,unit-c)
conclude UNIT-INCLUDES-UNIT(unit-a,unit-c) ;

Finally the constraint may be expressed by

always prohibited
3 wnit || UNIT-INCLUDES-UNIT (unit,unit);

The use of derivations is akin to the use of constraints insofar as it allows the explicit statement of
the derivation rather than distributing the derivation mechanism throughout the code where it might

be appropriate.

4.1.2.3 Modeling user commands

We model user commands causing appropriate changes to the source-data by making the
commands into explicit objects. The user provides a sequernce of such commands which the system
then processes. performing the appropriate action(s) for each command. An alternative would have
been to define actions for each of the commands and expect the user to invoke the actions directly
{we would then have had to impose constraints on the order in which commands could be issued--
e.g.. an add command must have been preceded by a correspunding update command). Our choice
was molivated by the nature of the described task--the system acts in a batch-like manner, accepting

a sequence of commands which it then processes.

An implication of this choice is that many of the attributes of commands must be of type "essence
of t" rather than simply "t", because the command exists before or after the object referred to (e.g..
one of the update-sub-commands in a sequence of such may be a purge-command. which will
continue to exist beyord the point of its processing; however, the unit will have been destroyed).

The command type definitions are as follows:

type file-spec(FILE, PASSWORD :9ptignal);
(weintroduce file-spec 1o connecta file refecence with a password)

tvpe command() supertype of
< update-command : copy-file-command : backup-command
restore-cecmmand >

+

type update-command (CURRENT-FILE-SPEC | file-spec ,
UPDATE-SUB-COMMANDS | seguence of update-sub-command);

type update-sub-command(CURRENT-UNIT | essence of unit,
UNIT-KEY | key :pptional)
supertype of

SOURCE-DATA MAINTENANCE EXAMPLE 411

< add-command :; purge-command ; replace-command ;
copy-unit-command : change-command >;

ivpe add-command(DaTA | seguence of line,
SOURCE-LANGUAGE | language :gptional) ;
lvpe purge-command() ;
ivpe replace-command (DATA | sequence of line):
lype copy-unit-command(FROMUNIT | essence of unit,
FROM-FILE-SPEC | file-spec :pptional):

lype change-command (CHANGE-SUB-COMMANDS |

sequence of change-sub-command):
type temporary-change-command() subtype of < change-command >;
lype change-sub-command supertype of

< insert-command ; delete-command ;
shift-command ; modify-command ;
copy-lines-command : replace-line-command >;

lype inser{-command(DATA | sequence of line,
SEQUENCE-LOCATION :optional):

type delete-command(LINES | essence pf seguence of line);

lype shift-command(LINES | essence of sequence of line,

COLUMNS | integer);

type modify-command(LINES | essence of seqQuence of line,
NEW-STRING | seguence of character,
STARTING-COLUMN | integer :pptional,

OLD STRING | sequence of character :pptional):

type copy-lines-command(FROMUNIT | essence of unit,
LINES | essence of sequence of fline,
SEQUENCE-LOCATION,,
FROM-FILE-SPEC | file-spec :gptional):

i1ype replace-line-command (OLDLINE | essence of line, NEwWLINE | line);
lyoe copy-file-command(TO-FILE.SPEC | file-spec., FROM-FILE-SPEC | file-spec);

lype backup-command(0OBJECT | gssence of project U library U file);

type restore-command (BACKUP-STATE | state , OBJECT | essence of
project U library U file U unit);

f 412 CONSTRUCTING GIST SPECIFICATIONS {

4.1.2.4 Modeling change

The simple and unified modeling bf the world as a set of objects and relations among them permits
a simple modef of change. The primitive actions that cause change are:

* gcreate - create a new object of a given type

s destrgy - destroy an existing object (and in so doing delete all relations in which it
participated)

« insert - insert (in the state) a relation among objects
* delete - delete an existing relation among objects

* ypdate - change the object filling a role in some relation

i These serve {0 build up all the changes we wish to model.

4.1.2.4.1 Object boundaries

Some conceptually simple and common activities in the world may involve many primitive actions to

accomplish them. e.g., when deleting a unit we may wish the sequence of lines attributed 10 that unit

to be deleted also. Languages which use structured object definitions also use that structure to
determine the extent of such operations. We feel this is a scrious overloading of concepts. instead,

we explicitly define the extent or “"boundary” of our structural objects so that actions may be applied

to the entire collection of objects and relations associating them i

To do this we augment type definitions with boundary defintions, which serve to direct how i
operations such as destroy ¢reate. etc . are to affect an object and its relationships. E.g.: ‘

type unit(...) bound eguiv by
! eguiv :UNIT-CONTENTS,
:UNIT-KEY,
:SOURCE-LANGUAGE ;

tells us that two units are equivalent if their UNIT.CONTENTS attributes are egquivalent (a recursive

{

|
applcation of equivalence), their UNIT-KEY attributes are identical (i.e., if either has a key as such an
attribute. then they both must have one, and it must be the same key--equivalence of keys is not

sutficient) and their SOURCE-LANGUAGE attributes are identical. The use of "equiv" or " = " before the

attribute name distinguishes whether to apply equivalence testing recursively between that attribute

of each object. or simply test the attribute values for identity.

The same boundary definition will not necessarily be appropriate for ditierent operations: e.g., in

SOURCE-DATA MAINTENANCE EXAMPLE 4-13

destroying a unit, we may wish destroy to be applied recursively to the UNIT-CONTENTS attribute but
not the UNIT-KEY or SOURCE-LANGUAGE attribute, in which case our boundary definition for destroy
would read:

iype unit(...) bound destroy Dy :UNIT-CONTENTS ;
note that for the purposes of destroy either we follow an attribute and recursively apply destroy to the
related object or we do not, there is no distinction corresponding to the equivalent/identical

distinction as appeared in defining equivalence between two objects. Hence in defining a boundary
for destroy we simply name the attributes to be followed without prefixing them with either "equiv" or

4.1.2.4.2 The top-level action to support user-commands

We define in our model an action SOURCE-DATA-MAINTENANCE which takes as argument a
sequence of commands and makes the appropriate changes to the source-data as directed by those
commands. We specify the interface to the user by defining as part of the system a demon (a
construct with two parts, a trigger, a predicate, which upon becoming true causes the response 1o be
performed). its trigger would be the user activity to initiate processing; its response would be the
invocation of SOURCE-DATA-MAINTENANCE with the appropriate command sequence. This
interaction paradigm serves to clearly delineate the interface boundary between user and system, and
is general enough to describe interfaces between multiple, independently active participants. In our

simple case an implementation would undoubtedly utilize a simple subroutine call as interface.
The definition of SOURCE-DATA-MAINTENANCE is as follows:

action
SOURCE-DATA-MAINTENANCE[commands | seguence of command)
definition
over commands named com
do attempt
case com of
update-command => UPDATE[com];
copy-tile-command => COPY-FILE[com]:
backup-command => BACKUP[com]:

restore-command => RESTORE[com];

end case ;

The construct gver <sequence> named <variable> dg (statement> iterates through the sequence in

v

4-14 CONSTRUCTING GIST SPECIFICATIONS

order, binding the variable to the current eiement of the sequence within the scope of the statement.
Here the etfect is to invoke the appropriate lower level action depending upon the sub-type of the
command.

The most interesting part of this detinition lies in the use of the gttempt construct. Within Gist, if a
transition leads to a state that violates a constraint, we say that the resulting state is anomalous. and
prohibit that transition. In some -ases there may be more than one way of performing the transition
(e.g.. if we said

beain require 3 unit ; destroy unit end
and several units exist, then we may pick any one of them to be destroyed). If all possible ways of
performing a transition from some state fead to anomaly, then that state itself is anomalous. Thus
anomaly can propagate backwards. Attempt is a construct that limits such propagation. We use it
here in a simplified form of its more general version,
attempt <statement1> then <statement2> glse <statement3>

This has the semantics of <statement1> : <statementz> if there is a possible non-anomalous execution
of <statemer'\t1>, otherwise <statements>. We use attempt in our example to limit the failure of a user-
command to that command alone, rather than aborting the processing of the entire sequence of

commands.

Definition of action UPDATE is similar to SOURCE-DATA-MAINTENANCE. It is an iteration
through a command sequence. invoking the appropriate lower level command. We now turn our

attention to the actions to perform the {owest level commands.

4.1.2.4.3 A simple action
The purge command (to get rid of a unit) is supported by the following action:

action PURGE[unit]
definition destroy vunit ;

The simplicity of this definition is due to two factors. First, the separate statement of constraints
means we need not clutter PURGE's definition with checks to ensure that the user has provided the
correct unit-key (as required in this example for those units which have an optional unit-key), that the
unit is not included eisewhere, etc. Second, the separate definition of a destroy bouncary for type

unit ensures that when we state destroy unit, we also destroy its UNIT-CONTENTS sequence of lines.

SOURCE-DATA MAINTENANCE EXAMPLE 4-15

4.1.2.4.4 Adjusting process "granularity"

The ADD command (to add a new unit) is a little more complex:

action ADD[unit | gssence of unit, file, add-command]
definition
begi
atomig
create unit, cupy-of-lines | sequence of line ||
copy-of-lines = add-command:DaTa A
unit: UNIT-CONTENTS = copy-of-lines;

insert file:UNIT = unit

end agtomig:
if 3 key || key = add-command:UNIT-KEY
then insert unit:UNIT-KEY = key
end ;
The construct greate unit ... || ... unit:UNIT.-CONTENTS = ...; is used to create a new unit and provide

it with its UNIT-CONTENTS attribute.

The interest here lies in the use of the atomic <statement), ...; <statement> end atomic construct.
The problem is that we must create a unit and insert it as an attribute of a file. Because of our
constraints, all units must be attributed to a file; hence we must somehow perform the creation and
insertion within a single state transition, so that on completion all will be well. This is precisely what
atomic provides--the enclosed statements are all executed conceptually within a single state
transition. so that constraints are checked only at completion, not during spurious intermediate
states. (If the state resulting from an atomic is anomalous, then the whole transition is anomalous.)
Thus atomic is a means of increasing the processing "granularity” to a coarser size than the primitive
transitions (¢create. destrgy. insent. delete and ypdate).

4.1.2.4.5 Non-determinism and constraints

Non-determinism is a common feature of Gist specifications. Specification of a particular object
may be non-deterministic, e.g.,

begqin require 3 variable | type ; (statement); {statement>; ... end
binds the variable to any object of the named type within the scope of the foliowing statements. (If no
such object exists, it is an anomaly.) Specification of the order in which to do some actions may be
non-deterministic, e.qg.,

gver { <object, ..., <object> } do {statement);
iterates through the set of objects in any order.

4-16 CONSTRUCTING GIST SPECIFICATIONS

The task we are specifying may be non-deterministic in nature (but this is not the case with the
source-data maintenance task). This is not the sole use of non-determinism; often it is particularly
convenient to specify some activity in a non-deterministic manner and let the constraints fiiter-out
only the acceptable paths. This allows us to specify the desired behavior without having to
algorithmically determine what choice necessarily must be made. This latter form of non-determinism

does occur within our specification, as we shall see next.

4.1.2.4.6 Shitting characters on aline

An example of filtered non-determinism is the specification of the SHIFT action, to support the
user-command shift, causing characters on a (unit's) line to be shifted ieft or right. We define a
relation ISSHIFTED between two sequences of characters and an integer, which holds if and only if
the non-blank portion of the first sequence is equal to the non-blank portion of the second sequence,
and has been shifted by the specified number of columns--by insertion of extra bianks if a positive

number of columns, deletion of blanks if a negative number.
This we specify by

reletion ISSHIFTED(NEWCHARS | sequence pf character,
OLDCHARS | sequence of character, COLUMNS.-TO-SHIFT | integer)

definition
3 olg-le‘t-blanks | sequence of " ", old-right-blanks | sequence of " ",
new-left-blanks | sequence of " ", new-right-blanks | sequence of " ",

non-bianks | segquence of character |]

~MEMBER (non-blanks , $, " ") A

oldchars = old-left-blanks @ non-blarts @ old-right-blanks A
newchars = new-left-blanks @ non-blanks @ new-right-blanks A
length(new-ieft-blenks) - length(o/d-left-blanks) = columns-to-shift ;

Observe that this definition implies that if there is at least one shifted version of a sequence (there
might be none. if we tried 10 shift a non-blank character off the left of a sequence}, then there exist an
‘nfinite number of equally valid shifted versions of the sequence (since extra blanks can always be

tacked onto the end).

(A[B[CD]| €

eec ecemee ==~ -=8hifted versions of

SOURCE-DATA MAINTENANCE EXAMPLE 4.17

The sole purpose of this definition is to state what shifting means--the responsibility is left to the
prevailing constraints of ensuring that the sequence of the appropriate length is inserted into a line of
some unit-contents (namely, the one restricting character sequences of lines in units to be of length
Card-Length). Thus. the shift action can merely select a sequence of characters which satisfies the
ISSHIFTED relation to update each appropriate line. Notice that non-determinism has been used in
two powerful ways here. First, through the ISSHIFTED relation, to select an appropriate object
defined by its acceptance criteria without specitying how it should be computed. Second. the
constraint on the length of lines, further filtering the satisfactory objects. The main difference
between the two is that the first is a purely local acceptance criteria (as defined by the relation), while
the second deals with the object usage (arbitrarily far into the future) and restricts choice to those
which will not violate constraint..

The definition of action SHIFT using this is:

action SHIFT[shift-command]
definition
over shift-command:LINES named line
do update :CHARS of line to
some newchars | seguence of character ||
ISSHIFTED (newchars,chears ,shift-command : COLUMNS) ;

Notation: some x | type || P(x) selects any object of the type that satisties P(x).

4.1.2.4.7 The use of historical reference

Given that our modeling is based upon states and transitions between them, it is particularly
convenient to have the ability to extract information from any previous state. If we did not have the
power to make such "historical references", we would be forced to remember all information that
might possibly be needed at some time in the future. This would both clutter up the information
carried along from state to state and complicate our activities (since they would have to save such
information explicitly). Thus historical reference is another example of a specification technique that

allows us to limit our concerns to only those which are of current importance.

Once we have accepted the use of historical reference, it is natural to have the full power to refer to
states as we have with any other type (with the limitation that we cannot change what has aiready
happened!). Furthermore, observable events include not only the primitive transitions, but also the

start and completion of action invocations.

4-18 CONSTRUCTING GIST SPECIFICATIONS

4.1.2.4.8 Historical reference and inserting lines into units

One of the sub-commands of CHANGE is INSERT, to insert a sequence of lines into the unit-
contents of a unit. The user optionally provides a specific location for the insertion to occur. If it is
omitted, the lines are to be inserted after the last line changed in the unit since the start of the
CHANGE command, or at the front of the unit if there has been no such change.

To model this we first define a relaiion between a unit and the latest state (since last starting
CHANGE on that unit) in which the unit contents then differed from the unit contents now:

relation LATEST-STATE-OF-CHANGE(UNIT , CHANGESTATE | state)

definition
changestate = latest some state || wnil:UNIT-CONTENTS —~eQuiv

(unit:UNIT-CONTENTS as of state) A
state after latest start CHANGE[uwnit,$] ;

Notation: <expression> as of <{state> causes the expression to be evaluated in that state. }atest
{state> , where <{state> is some expression denoting a state or states, denotes the most recent such
state. stant <action>[<object>,...] denotes the state(s) in which invocation of that action (with those
objects as actual parameters) began. state, after state, is true if and only if state, is more recent than
statea.

Thus in the above "state after latest start CHANGE[unit,$]" will be true if and only if stzte is more
recent than the latest start of CHANGE on unit.

Then, if such a state exists, we may determine the location of the change and insert the new lines

after it; otherwise insert them at the front of the unit.

4.1.2.4.9 Historical reference and backup/restore commands

In the English specification of the source-data maintenance system, backup and restore commands
cause portions of the world (libraries, files, etc.) to be written to or recovered from magnetic tape. In
our modeling of the behavior (as opposed to implementation) within Gist, backup becomes a totally
superfiuous operation, since with historical reference we may refer to any past state and perform a
restoration of an object to the condition it was in in that state. The ramifications of this for any
implementation are that at any point in time the user might request restoration of any object to any
earlier state! i, however, we choose to insist that the user's restore commands may only restore
objects to the state they were in when explicitly mentioned in a backup command, the implementation

need be prepared to make only such restorations, rather than arbitrary ones.

SOURCE-DATA MAINTENANCE EXAMPLE 4-19

This is an interesting case, a non-obvious line between specification and implementation. We

follow the more restrictive style of restoration, retaining the backup command to mark an objectand a
state by its invocation:

action BACKUP[backup-command] ;

A restore command must refer to a state at which a hackup command was invoked, and to an
object that was the object, or within the object, given as the argument to the backup command:

action RESTORE[restore-command)

let obj ; essence of project U library U file U unit
= restore-command: OBJECT

precondition
3 backup-command ||

restore-command : backup-state = start BACKUP[backup-command] N
(backup-command:0BJECT contains obj)
as of restore-command:BACKUP-STATE

definition
restore obj as g__t restore-command : BACKUP-STATE ;

Notation: restore <object> as of <state> restores the object to the éondition it was in in that state.
creating/destroying objects and inserting/deleting relations to make the object equivalent (with
respect to its type's boundary definition for equivalence--see 4.1.2.4.1) to its earlier condition. Thus
restoring a lile, for example, will involve deleting new units attributed to the file since the specified
state and restoring the units that were attributed to the file in that state.

4.1.2.4.10 Historical reference and desired behavior

We have demonstrated how historical reference can be used to support BACKUP and RESTORE
commands. It can also support the “temporary" change option. The user command CHANGE. to
cause changes to a unit (with sub-commands INSERT, SHIFT, etc.), may be declared to be
“temporary" in pature, in which case at the end of processing the current batch of user commands

the (presumably) changed unit is to be restored to its state prior to commencement of the temporary
changes.

We should, however, ask whether either form of restoration, either user-directed via the RESTORE
command, or automatically because of earlier "temporary” changes, could possibly fail. 1t turns out
that this possibility does indeed exist. Suppose we have two units, unit-A and unit-B, and unit-A

4.20 CONSTRUCTING GIST SPECIFICATIONS

contains a line that "includes” unit-8. At this point we issue a backup command for unit-A, or change
it temporarily. Now if we delete the-"include" line in unit-A, we may then be able to change unit-B to
insert a new line "including” unit-A. From this state it would be impossible to restore unit-A to its
original condition, since this would violate our constraint prohibiting circularity of includes.

Should the attempted restoration simply fail, or should the modification of unit-B have been
prevented? We must decide which of these (or other) alternative behavicrs we want. The English
specification, by not saying anything. suggests the first option, namely restoration can simply fail. Qur

. feeling is that the possibility of such failure was never even recognized, and this behavior was
dictated by circumstances rather than choice. Reasonable behavior might be that in the case of user-
issued backup and restore commands, restore could fail in the manner described above (i.e., it is the
responsibility of the user), whereas in the case of temporary changes, it must always remain possible
to do the restoration (we don’t want to surprise the user with an "automatic” facility that fails!). Our
point is not that this is the "right” choice, rather that the existence of such a choice must be
recognized and the choice consciously made, otherwise the resulting system may exhibit surprising

and inappropriate behavior.

Our suggested choice permits us to demonstrate ancther Gist feature. We wish to write a
constraint to ensure that restoration (of temporarily changed units) will always be possible. To do this

we say

always required
admissible RESTORE-TEMPORARILY-CHANGED-UNITS[] ;

where RESTORE-TEMPORARILY-CHANGED-UNITS is the action to perform the appropriate

restoration.

The construct admissibie <statement> is a predicate that is true if and only if there is some non-
anomalous way of executing the statement in the current state of the world--however, the statement is
nct actually executed, i.e.. the current state is not changed. but a truth value is returned. This is a
simple form of "future" reference. Often the easiest way of predicting a re5ulf of doing something is
to extract the desired information from the state in which it has been done. but proceed (with the

information) from the state prior to doing it.

T

SOURCE-DATA MAINTENANCE EXAMPLE 4-21

4.1.2.5 Dynamic constraints

The defined constraints serve tolimit the possible states that the model world may achieve. We
notionally distinguish between "static” and "dynamic” constraints by classifying those that refer only
to the current state as “static”, and those that refer to several states (usually the current state and the

previous one) as “dynamic".

4.1.2.5.1 A "dynamic" constraint

An example of a dynamic constraint taken from the source-data maintenance worid is:
" A unit may not be destroyed if it is included anywhere”
We express this constraint by forbidding a transition from a state in which a unit exists to a state in
which that unit no longer exists (i.e., has been destroyed in the transition) but is still "included” by
some line in the contents of a unit.
always prohibited

3 dead-unit | gssence of unit il
destroved dead-unit A UNIT-INCLUDES-UNIT($, deadc-unit)

Reference to a past state is via the destroved predicate, which is true if and only if the object existed
in the immediately preceding state and has been destroyed in the transition.

This explicit statement of the constraint contrasts with the English specification. wherein no similar
statement occurred; instead, an implementation to achieve the same effect (by making use of
reference counts) was described. This was particularly inappropriate for several reasons: the
intended behavior had to be deduced from the implementation; the other parts of code lost clarity
because they had to deal with reference counts; worst of all, it was actually wrong - in the case of
destroying an entire unit no mention was made of decrementing the reference counts of units
"included" by lines of the destroyed unit.

4.1.3 Review of specification

The previous section demonstrated the use of Gist's features in some of the specification of the
source-data maintenance task. The entire specification is available from the author.

We may now iook back and ask the following questions:

1. How effective are the Gist features for expressing the structure and behavior of the task
domain?

2. What have we learned about the task from having written a formal specification?

T

4-22 CONSTRUCTING GIST SPECIFICATIONS

3. What difficuities arose in constructing the specification?
4. How comprehensible is the specification to someone other than the writer?

5. What do we intend to do with the formal specification?

4.1.4 Implications for Gist

Most of the Gist features used to specify the source-data maintenance task were present in the
language prior to tackling this exampie. Certainly the underlying modeling approach proved
satisfactory. We were led to some additions and notational refinements. These were:

« essence of, as a means of maintaining references to destroyed or yet to be created
objects.

* boundary definitions, to support destroy, restore. etc.

» attribute notation for defining and making use of binary relations.

4.1.5 Implications for the source-data maintenance task

In constructing a formal specification in Gist we feel we have developed a much deeper
understanding of the task than we had from merely reading the English description. We were led to
recognition of ambiguities. implementation biases, and possible errors in the informal English.
Formalizing in Gist forced us to consider behavioral interactions which we might otherwise have

overlooked (for example, between restoration and constraints).

it may well be the case that spending a similar amount of time studying the task (without producing
a Gist specification) would have led to the same insights. so we should regard the above observations

as lack of negative evidence rather than additional positive support for our approach.

4.1.6 Difficulties of constructing the specification

A significant degree of effort was required to construct our specification. We attribute much of the
difficuity 1o the need tc infer the desired behavior from the English description. As we have already
remarked. we found this description to be overly biased towards a particular implementation; hence
we could not merely formalize the description, but rather had first to disentangie its intent and

formalize that.

We were also hampered by a fack of experience of writing Gist specifications. Faced with a choice
of alternative ways of specifying some behavior, we had little experience to guide our choice.

SOURCE-DATA MAINTENANCE EXAMPLE 4.23

Finally, we recognize the need for some assistance in understanding the implications of our
specification. In building a specification from descriptions of desired behaviors in simple cases we
must be careful to consider the possible interactions of these cases and ensure that the resulting
behavior is satistactory.

4.1.7 Ditficulties of understanding specification

We have observed that readers of our specification find it hard to understand--even other members
of our group who have equal fluency in Gist. We attribute this in part to our emphasis on easing the
task of the specification writer rather than the reader--Gist is still in development and there are
undoubtedly many cosmetic improvements which would help. Nevertheless, there is more to
specification than merely ensuring we have an effective notation. First, specifications may require
some explanation of how they were derived--tor example, make explicit the choices faced by the
specifier and his reasons for choosing one over another. Second, some assistance is required to help
the new reader buiid up gradually to a comprehension of the entire specification. We envisage
several tools to assist comprehension. For example, a sophisticated interpreter would permit
exploration of the behavior of a specification and analysis tools could outline the possible areas of

interactions among the features of a specification.

Finally we might organize our specification into layers of increasing complexity, working from a
simplified specification suppressing (or distorting) features in the higher layers, so that by descending
from layer to layer an increasingly accurate and.,%mpTete comprehension of the specification can be

incrementally built up.

4.1.8 Use of specification

The main purpose of a Gist specification is to serve as a behavioral descrigtion. We must define
which portions of its behavior are “observable” (e.g., observable behavior of the source-data
maintenance specification would presumably include the creation / destruction of units, files,
projects, etc., but not the invocation of particular actions PURGE, CHANGE. etc.). Given such a
notion, we may ask whether an implementation exhibits the same observable behavior. If we can
demonstrate that it does. we have validated that implementation. We have not as yet developed a
syntax for expressing the observable portions of behavior of a Gist specification.

One of our long-term research aims is to be able to take formal specifications of behaviors written
in Gist, together with relevant details suppressed from our behavioral description (namely, interface
and implementation requirements, and refinements of the described normal-case behavior) and

4.24 CONSTRUCTING GIST SPECIFICATIONS

transform them to achieve efficient implementations. We are sure that such transformations will
require human guidance, since the distance between our specifications and any tolerable
implementations is very wide.

For example, consider removing Gist constraints. Our aim would be to replace them by checks at
all possible choice-points in the program that could lead to violation of the constraint. In cases where
we cannot construct an appropriate predicate at the choice point to recognize which choices will lead
to anomaly we would have to resort to other mechanisms, such as back-tracking. A detailed

-transformation which illustrates these problems is presented in [1].

4.2 HOST-IMP SPECIFICATION

4.2.1 Overall organization of specification

First we define general message-passing features common to imps and hosts, then we describe the
specific features. We encompass the effects of user interaction and hardware failure as random

activities with which the hosts and imps must be able to cope.

4.2.2 General message-passing features

We model message-passing by defining types item and node. Objects of type node transmit
objects of type item between themselves. At this generai ievel each item has two attributes--a
MESSAGE (further details of which we will not need at this level) and an ADDRESS--the node to which
the item is 1o ultimately be delivered. The Gist construct agent is used to describe nodes. in order that

they may be independently active processes.

nodes - we denote connections between nodes via relation CONNECTED. For simplicity we
prohibit a node from being connected to itself.

Each node has the following attributes’

* PENDING - those items yet to be dealt with by the node,

* TO-BE-SENT - items to be sent elsewhere by the node.

* MY.MESSAGES - messages extracted from items which are addressed to this node.
Each node has the following actions and demons:

» action TRANSMIT . this causes ar item to be transmitted to a (connected) node.

HOST-IMP SPECIFICATION 4-25

* pending-demon RECEIVE - this demon is triggered when a transmission directed to this
node is begun (i.e., a TRANSMIT action is invoked, with this node as the destination). Its
response is to await completion of the TRANSMIT. If the completion was normal, then the
‘transmitted’ item is inserted into the node's pending attribute. (If the completion was
abnormal, nothing is done, modeling the loss of a transmission if the transmitter fails
during transmission).

* pending-demon PROCESS-PENDING - this demon is triggered when a new item is
added to the node’s pending attribute. Its response is to remove the item from the
pending attribute (cleaning up), and on the basis of whether or not the item is addressed
to this node, insert it into the my-messages attribute or the to-be-sent attribute.

* pending-demon SEND - this demon is triggered when a new item is added to the node's
to-be-sent attribute. Since the response in this domain will turn out to be so dependent
on whether the node is a host or imp, we will only present the definitions of SEND
particular to hosts and imps.

 action ACTIVATE - this action is to be invoked when the agent is activated. it clears the
to-be-sent and pending attributes, and waits Re/ay-Set-Time (a hardware requirement).

A separate agent hardware failure is defined to mode! the random hardware failure of nodes.
Two demons are provided, one to (at random) deactivate a node, and the other to (rejactivate a node.
The intention is that this specify part of the environment in vyhich the nodes operate, not that this be

something the implementor must incorporate into his software!

4.2.3 Specialization to host-imp world

We refine the agent node into host and imp. We refine the type message into user-message,
acknowiedgement (to acknowledge successful receipt of an item), host-dead-
acknowledgement (to acknowledge receipt of an item at the imp connected to the destination host
when that host is currently "dead", and host-going-down-message, which a host sends its
connected imp to indicate it is (voluntarily) going down. Since we are only concerned with host

communication via imps, we prohibit CONNECT holding between two hosts.

A separate agent interface defines random demons to describe relevant possible behavior of the

cutside world. This consists of two demons,

* USER-SEND to create a user-message with destination some host and insert it into the
to-be-sent attribute of a host;

* USER-TURN-OFF-HOST to create a host-going-down- message and insert it into the to-
be-sent attribute of a host (this models the voluntary means by which a host goes down).

4.26 CONSTRUCTING GIST SPECIFICATIONS

Agent host inherits the definitions of agent node. in addition, it also has the following:

* attribute CONNECTED-IMP, defined as the (unique) imp to which the host is CONNECTed
(in both directions).

» pending-demon SEND - this demon is triggered by insertion of a new item into the host's
TO-BE-SENT attribute. Its response is to TRANSMIT the item to its connected-imp (in
point of fact, because of our constraints, the connected imp is the only node to which the
host could possibly transmit the item).

Agent imp inherits the definitions of agent node and in addition has:

* Attribute DEAD-HOSTS, to record which of the hosts are known by this imp to be currently
"dead" (down either due to hardware failure, or because they sent a host-going-down-
message). This is maintained by two pending-demons:

| - MARK-HOST-DEAD, which inserts a (connected) host into the imp's dead-hosts
when that host has become inactive or a host-going-down-message has been
receivec by the imp from that host.

- UNMARK-HOST-DEAD. which removes a host from the imp's DEAD-HOSTS
attribute upon successful receipt of any item (other than one with a host-going-
down-message as its message attribute) from that host (successful receipt is
observed by watching for insertion of an item into the PENDING attribute).

* pending-demon SEND - this is triggered when a new item is inserted into the imp's TO-BE-
SENT attribute. Its response is to first remove the item from that attribute; then it tests to
see whether the imp is connected directly to the destination address of the item--i* so,
and if the destination is a host, then the appropriate acknowledgement must be sent and
the item TRANSMITted (depending upon whether that host is currently regarded as
dead). Iif the imp is not connected directly to the item's destination, then it is
TRANSMITTED onwards through the network (in this specification we are not concerned
with selecting which node in the network is the most appropriate to pass the item on to).

* pending-demon RECEIVE . a slight specialization of the RECEIVE defined for nodes, in
that the response waits for termination of the TRANSMIT or 15 seconds (a “timeout”).
As before. only normal completion of the TRANSMIT will cause insertion of the item into
the PENDING attribute.

* pending-demon PROCESS-MY-MESSAGES, to discard messages addressed to this
imp.

» acticn ACKNOWLEDGE-OK, used to create an acknowledgement for an item,
addressed to the creator of that item.

* action ACKNOWLEDGE-DEAD, similar to ACKNOWLEDGE-OK, but used when the
destination host is currently dead.

* demon CONNECTED-HOST-GONE-DOWN - this is triggered when a connected host is

Based ‘F. D

HOST-IMP SPECIFICATION 4.27

observed to have become inactive. its response is to invoke action DEADIFY, to discard
all items addressed to that host at present in the imp's to-be-sent attribute, and to
unschedule all pending SENDs of items to that host.

* demon TARDY-SEND-QUEUES is triggered if an item addressed to a connected host
remains on the to-be-sent attribute more than 30 seconds. Its response is to invoke
DEADIFY.

4.2.4 implications for Gist
We required the following refinements of Gist:

* agents, which have independently active processes. In addition, such agents may be
externally activated and deactivated. Deactivation is to abort the currently active and
triggered processes of that agent. While deactivated, no demons of that agent will be
triggered. Upon activating a previously deactivated demon, action ACTIVATE is
invoked. None of the history prior to activation is available to that agent. Furthermore.
agents must be able to voluntarily suspend themselves for some period of time via wait.
during which time none of their demons are triggered. Following the delay, the currently
active process continues from the point after the wait.

Real time - "seconds” for wait delays, timeouts, etc.

pending and non-pending demons. Non-pending demons are the usual Gist demons.
which upon triggering are invoked immediateiy (perhaps interrupting the processing ot
another demon’'s response). For this specification we required another class of demons.
which upon triggering would add themselves to the end of an implicit queue of already
triggered demons. Only after the demons earlier on the queue had completed their
responses would such a demon be permitted to commence processing its own response.
This incorporation of a weak scheduling mechanism into the Gist demons was thought
appropriate, rather than having to explicitly build a scheduler. We did some explicit
program-controlled manipulation of the pending queue when some of the pending
demons were to be unscheduled.

4.3 TEXT FORMATTER SPECIFICATION

4.3.1 Source of Problem

The formatter we specify is designed to have the capabilities of the formatter described by
Kernighan and Plauger in chapter 5 of their book [2].

We give a (very) brief and informal account of the facilities the text formatter is to provide.

Input to the formatter is a sequence of lines, where lines consist of sequences of characters. Some
fines will be text, some will be commands to the formatter. Command lines are identitied by the

4.28 CONSTRUCTING GIST SPECIFICATIONS
occurrence of a "." in the first column followed by a two letter abbreviation of the name of the
command.

In action the formatter may be in a "fill” mode, during which paragraphs are formed by packing as
many input words as possible into the output lines, the lines being "right-justified” (to produce an
aligned right margin, like this paragraph) by padding out with extra spaces between words if
necessary. When not in "fill" mode the input text lines are output without modification. With filling
switched off, the words afready gathered to go into the next output line are put out without right
.justification. This action of forcing out a partially collected line is called a break. Some of the
commands implicitly cause breaks when they are encountered, even though they may not cause
filling to be switched off.

We present the commands and briefly explain their actions:

"filling" commands

ti Cause a break and switch on "fill" mode.
nf Switch off "fill" mode.
br Cause a break (but does not switch into or out of "fill" mode).
page commands
bpn Begin page. n is an optional numeric argument, which, if present, is taken as the

number of the new page. If not present the default is to increment the current
page number by one. Causes a break. If this command would produce an entirely
blank page (but for header and footer titles). i.e. occurs af the very top of a page. it
merely adjusts the page number without creating the blank page.

pin Set page length to be n lines. Default is n = 66, does not cause break.

he t Set the header to be printed at top of each page. t is a string argument which
becomes the new header. The character " # " within the string is replaced by the
current page number. Does not cause a break.

fot Set the footer title to be printed at bottom of each page. Analogous to the he
command.
Isn Set line spacing to n (i.e., n=2 corresponds to double spacing). Defaultis n=1,

does not cause a break.

spn Causes a break and produces n blank lines. Default is n=1. Does not produce
blank lines at the very top of a page.

TEXT FORMATTER SPECIFICATION 429
line commands
cen Cause a break and center the next n text lines (i.e., insert extra spaces if

necessary to cause the text lines to be centered within the current margins.)
Default is n = 1. If another ce command is encountered whilst centering text lines,
the new command's value of n takes precedence.

uin Does not cause a break. Default is n=1. As with ce command, encountering
another ul command will adjust the count of lines to be underlined.

rmn Set right margin to be n. Default is n = 60, does not cause a break.

inn Set left margin (indentation) to be n. Default is n = 0, does not cause a break.

tin Cause a break and set the left margin for next output line only to be n. Default is
n=0.

Numeric arguments to commands may be preceded by a " + " or "-", in which case the value is taken

to be the current value of the parameter being set incremented or decremented accordingly. An

exception to this is the ti command which adjusts relative to the current left margin setting.

In order that the formatter behave reasonably with text containing a minimum of formatting
commands, input lines which start with blanks or are entirely blank are treated as follows: Lirnes empty
but for blanks cause a break and a biank line to be output (even at the top of a new page). Lines
starting with n blanks (but followed by other characters) where n>0 cause a break and a temporary

indent of +n.

This description includes many interface details of how the user is to indicate what formatting
activities are to be applied to what portions of his text; we shall separate the specification of
formatting activities from the specification of how to direct the application of these activities. Our
specification is concerned with the former, namely the tasks of formatting, rather than the interface
details. In Section 4.3.3 we briefly consider what must be done in an interface to our specified
portion.

4.3.2 Formatter activities
Input is a sequence of

« "paragraphs"” - each consisting of a sequence of "info~words", that is a word (sequence
of characters) together with layout information (margms, page«size, etc.). The words are
to be accumulated into right-justified lines.

* “info«lines"” - a line (sequencte of characters) together with layout information.

4.30 CONSTRUCTING GIST SPECIFICATIONS

* "padding+lines" - these are to emerge as blank lines in the output, unless they would
appear at the very top of a page, in which case they are to be discarded.

We follow the convention that the information associated with the first word to go into a line sets
the characteristics for the entire line, and similarly that the information associated with the first line to

go into a page sets the characteristics for the entire page.

Information relevant to lines consists of: left« margin, right«margin, line«spacing (the number of
blank lines to be inserted between each text line) and subsequent« left« margin (if the word/line is too
long to fit within the margins, it will be split over two or more lines--in such a case the left margin of

subsequent lines is to be the subsequent«left+margin).

Information relevant to pages consists of header«title, footer~title, page«~length and begin+page.
This last indicates that a new page is to be started. In the original input we do not permit info+words

other than the very first of a paragraph to cause a begin+page.

Output is a sequence of sequence of lines of characters, representing the page images produced

as a result of the formatting operation.

4.3.3 Interface

The input as described by Kernighan and Plauger consists of a sequence of lines, with conventions
for denoting text and formatting commands within this sequence. The input we essume pre-supposes
some interface to derive from the user-input (in whatever form) the paragraphs, info«lines and
padding«lines that we expect. To handie Kernighan and Plauger’s input conventions our interface
would have to

* recognize and decode commands;

* extract and accumulate words (to go into paragraphs) from text lines:

- process parameter setting commands to insert the appropriate information into info+lines"
and info-words (e.g. a command to set the right margin to some value would cause that

value to be inserted into the inform~ » of info-words/lines following that command
until the next such command),

« convert space down commands into the appropriate number of padding lines.

TEXT FORMATTER SPECIFICATION 4.31

4.3.4 Organi2ation of specification

FORMAT is the top-leve! action invoked to do the formatting. This expects a sequence of
paragraphs, info«lines and padding« lines which compose the input to be formatted.

Formatting is divided into two overall stages.-first, the activities to form individual lines of output are
performed, then pages are formed from these lines.

* FORMAT initiates the processing of the first stage by creating an object of type
mixlets+input to which the input sequence is attributed. This wili trigger the demons
PARAGRAPHING, SPLIT*OVERLENGTH<«LINES, CENTERING,
LEFT-MARGIN«~PADDING and INTER«LINE+~PADDING to go to work on the input
paragraphs and info«lines, and each perform their activity. Their net result is to convert
the input sequence into a sequence of info«lines and padding«lines (no paragraphs left)
ready to be incorporated into pages. There is some coordination between these demons
to ensure that: overlength lines will be dealt with by SPLIT«OVERLENGTH«LINES
before INTER+~LINE+~PADDING and LEFT«MARGIN<-PADDING act on them, and
CENTERING is performed on lines before LEFT+« MARGIN«PADDING. Otherwise they
act independently.

» After the first stage of formatting we are left with a sequence of info«lines and padding
lines. Prior to forming pages, FORMAT converts this sequence into a sequence of
simpler objects, which we call "linelets": Each linelet has two attributes, information, and
either a line (of characters) or padding. Action PAGINATION is invoked on this sequence
to produce the sequence of sequence of lines representing the page images.

We now briefly describe the activities of these demons and actions:

PARAGRAPHING replaces a paragraph (a sequence of info«~words) by a corresponding sequence
of (filled and right justified) info«lines. This is achieved by selecting a partition of the paragraph's

words. and for each element of the partition (i.e., a sequence of words) forming an info«line.

« If the line is to represent just one word, no justification is done.

+ If it represents two or more, it must be right justified (i.e., every word separated by at least
one blank. and enough blanks inserted to align the leftmost and rightmost words with the
left and right margins).
The only acceptable partitions are those for which such justification of the necessary lines is possible.
Furthermore, we select the partition(s) which minimize the total number of info«lines produced (the

essence of what a "filled" paragraph is).

SPLIT«OVERLENGTH«LINES - this demon splits overiength info+lines (i.e., info=lines for which
the text is too wide to fit between the margins) into two (or more if necessary) info«lines. (Note that
this also will take effect on lines produced during paragraphing, so excessively long words, i.e., so

4-32 CONSTRUCTING GIST SPECIFICATIONS

long that the single word is too wide to fit between the margins--each of which will have been
incorporated into a separate info « line, will be dealt with by this demon.)

CENTERING - this demon adjusts the left~margin value of those info«lines which are to be
centered in order to center their text between the margins.

LEFT+«MARGIN«+PADDING - this demon inserts the appropriate number of blanks at the start of
each text line which has a non-zero left-margin value.

INTER+LINE+~PADDING - this demon inserts the appropriate number of padding lines after each
text line when its spacing value is greater than zero.

PAGINATION - this action takes the sequence of linelets and forms a sequence of sequence of
lines, the output page images. The process is similar to that applied to paragraphs; the incoming
linelets are partitioned. and from each partition a page-image is constructed {involving discarding
padding lines which would fall at the top of a page, adding/discarding padding lines at the bottom as
necessary to bring the total page size to the appropriate fength, including page header and footer if
required). The acceplable partitions are those for which s;uch construction is possible. From all
acceptable partitions, we select the one(s) that leads to the 13t number of output pages.

4.3.5 Implications for Gist

4.3.5.1 New Gist usage

The primary novel use of Gist in this specification has been the construct continyations of
{statement> from which {object expression> satisfies <predicate>. This was applied within pagination
and paragraphing, to do the appropriate activity in such a way as to minimize the resulting number of
pages/lines. Hence we are applying a minimization predicate over all possible resulting states of the

execution of {statement).

Extensive use was made of generator expressions to denote sequences and to iterate over

sequences.

4.3.5.2 Exposed weaknesses of Gist and dissatisfaction with specification

On many occasions within this specification there is the need to perform some action which creates
some new objects and communicates these back to the invoker--the invention and use of a unique
relation for the sole purpose of such communication is a clumsy way of achieving this. Often this is

TEXT FORMATTER SPECIFICATION 4-33

linked with the use of iterative constructs; there are powerful means of denoting expressions, and
powerful means of iterating actions, but the combination of the two is not available (i.e., iterating
actions and emerging with a resutt).

There seems to be a large overhead in creating all the syntactic support for relatively trivial actions,
demons, and relations.

Couid we perhaps have gone even further towards a descriptive rather than algorithmic
specification? For example, the seemingly natural decomposition of the task into first forming lines
and then combining these into pages might be regarded as an unfortunate split. it might compromise
our ability to specify behaviors relying on the detailed interaction of these stages (e.g., padding out a
filled and justified paragraph with extra blanks to make the overali paragraph length longer and so
avoid "widows" or "orphans”--when the iast line of a paragraph falls on the top of a new page, or the
first line of a paragraph falls at the bottom of a page). Is there some suitable structuring of the
specification that would not be biased in such a manner and yet be reasonably divided into

comprehensible components?

4.3.5.3 Advantages accrued from the use of Gist
The increased ease of writing a specification rather than an algorithm is particularly evident in:

* The use of the continuations of .. construct to free us first to describe a general means of
performing some activity (e.g., forming the lines to represent a paragraph) and separately
selecting which of the possibly multiple alternatives are appropriate (e.g., we want to
minimize the resulting number of lines to represent that paragraph). Ciearly we can
always write a "British Museum” style algorithm to do the same, but Gist allows us to
specify this effect with ease.

* The use of demons to direct the processing activities (e.q., centering. paragraphing. elc.
are demons triggered by the data requiring the processing these demons perform) rather
than having to write an arbitrary scheduler ourselves.

4.3.6 Extensions to formatter

Kernighan and Plauger suggest several possible extensions to their formatter's capabilities. Some
of their extensions fall entirely within the portion we have chosen to regard as interface. We will limit
our attention to those affecting the formatting activity itself. We consider how we might incorporate
these extensions into our specification (which was not designed with these extensions in mind).

4-34 CONSTRUCTING GIST SPECIFICATIONS

4.3.6.1 Separating justification and filling

We consider switching justification on and otf separate from filling. A little consideration suggests
that justification is meaningless outside of the context of paragraphs; hence we may limit our
attention to the paragraphing activity.

We make use of a new relation TO«BE« JUSTIFIED, which holds of words in paragraphs whose
lines are to be justified. As before, we presuppose that the interface has inserted this relation on the
appropriate words.

Action CREATE « JUSTIFIED«INFO«LINES « FOR+«PARAGRAPH requires modification to examine
each sequence of words to go into a line and use CREATE« JUSTIFIED«INFO«LINE+ FOR+«WORDS
or CREATE«UNJUSTIFIED«INFO«LINE«FOR«WORDS as appropriate (and following such
modification might be better named CREATE«INFO+«LINES«FOR+PARAGRAPH).

4.3.6.2 Filtering output pages

This extension allows us to limit our interest to a subset of the output pages. This may be easily
incorporated by a modification to CREATE<PAGE«IMAGE, causing the empty sequence of lines to
be "returned” if tk 2 page number is not among those in which we are interested.

4.3.6.3 Forcing text to appear on a single page

This extension is to permit us to force portions of the text to occur entirely in one page. To
incorporate this extension, we must extend the datatype information to have an extra attribute, a
"group”; the intended behavior is that all info«lines and info-words that are related to the same
"group” must appear within the same page. In the formation of paragraph lines from words we must
faxe care to ensure that the set of groups to which it related is the union of the groups to which its
constituent words are related. The group information will be used by relation PAGE«PARTITION to
require that info~lines related 1o the same group to fall within the same element of the partition.

4.3.6.4 Extra space after sentence

The purpose of this extension is to cause more than one space to foliow the end of a sentence if it
falfs within the interior of a line. We may assume that this is applicable only during paragraph
formation. The elfect could be achieved by first defining an end-of-sentence recognizer; then within
ARBITRARILY«PAD«WORDS+WITH+BLANKS we may examine all words except for the very last
one to go on the line and, if it is recognized as a sentence terminator, require that it be followed by at

least two blanks.

BRI 8

TEXT FORMATTER SPECIFICATION 4.35

4.3.6.5 Hyphenation during filling

We will not consider the task of determining suitable hyphenation points of words, if we were

somehow able to make such a determination we could use the information as follows:
Within CREATE«JUSTIFIED«INFO«LINES+«FOR+«PARAGRAPH we would extend the partitioning to
include not only all possible partitions of (undivided) words but also partitions in which a single word
could be split (according to our legal hyphenation scheme) over the end of one partition element and
onto the start of the next. The characters of the first portion of the split word would be appended with
the hyphenation character ("-"), and go to form the last info-word of the first partition element, the
remaining characters going into an info«~word at the start of the next partition element (with the
possibility of further hyphenation, which might be necessary if this is a verrrrry long word...).

For example, here are some words to be partitioned for paragraphing.

Here are some

words to be partit-

ioned for para.
graphing.

4.3.6.6 Conditionals

This class of extensions is to permit the formatting actions to be dependent on the formatting
conditions. This is the least specific of the extensions, and we can only specuiate as to how
amenable our specification might be to catering for whatever power might be desired.)

We anticipate that our specification style would permit such features to be incorporated in a
reasonably straightforward manner--we may specify the alternative actions as a non-deterministic
choice at the appropriate blace for the definition of such actions, and make the selection at the
appropriate place for the testing of the conditions.

51

5. GIST INITIAL OPERATING CAPABILITY
DESCRIPTION

5.1 INTRODUCTION

The Gist Initial O, =rating Capability (10C) is the first step toward a package of tools to help
specifiers create, test. and maintain Gist specifications. The IOC provides the foliowing facilities:
* A Gist editor which enables the specifier to interactively create and modify the source text

of Gist specifications. The editor ensures that the specificatiorris syntactically correct at
all times.

* A pretty printer which formats the text of a specification for enhanced legibility.
* A Gist evaluator capable of executing Gist expressidns, predicates, and statements.

* A Gist executive which operates in the context of a “current" specification. The
executive permits the specifier to create an initial execution state, specified in Gist, and
interact with the evaluator to expiore possible activity from that state.

* The ability to save Gist specifications created in the IOC environment on files, and to load
such saved specifications into the I10C.

The structure of the IOC is depicted in Figure 5-1. The entire I0C is implemented in Interlisp [3] and
runs within the standard Interlisp environment. The user communicates through the Gist executive to
the various Gist tools. and need not interact with or understand Interlisp at all. However, any
command not specifically recognized as meaningful to one of.the tools is treated as an Interlisp
command. This means that the user has available the full facilities of Interlisp, including the
Programmer’s Assistant facilities. It also means that ercpr messages in response to ilegal inputs may

appear obscure to users unfamiliar with Interlisp.

The editor and prettyprinter subsystems are constructed automaticaily (as Interlisp programs) by
another program. called POPART, from a BNF syntax for Gist. These tools provide all access to the
specification. both in its internal tree representation and its external text representation. The
specification is tested by the Gist evaluator which is composed of a declaration compiler and an
interpreter. The evaluator, through the interpreter, produces the behavior of the specification on the
test data. The evaluator uses AP3, a programming language embedded in Interlisp, to maintain an
internal representation of one or more chains of process states as the specifier tests his specification.
Finally, the Gist executive interfaces the specifier to these tools.

GIST INITIAL OPERATING CAPABILITY DESCRIPTION

Compiled
Declarations
GISTEXECUTIVE
GIST EVALUATOR
Editor,
PrettyPrinter,
Declaration
&
File 170 Inter.
Compiler praeter
POPART
AP3
Run-time support

INTERLISP

Figure 5-1: Gist {OC configuration

Dynarmic
Specifi-

cation
Database

INTRODUCTION 5-3

8.1.1 Transliteration

In much of the printed documentation on Gist, including examples of Gist specifications, symbols
are used which are not available in the standard ASCIl character set. The IOC requires that these
symbols be transliterated as shown in Table 5-1.

Table 5-1: 10C symbol transliteration

Publication Symbo! IOC transliteration

and

or

Xor
implies
equiv

not, ~

tor all, all
there exists, exists
element of
union
intersect

DCMmwI <>

5.2 Editor, PrettyPrinter, and File [/0

The Gist eclitor, parser, and prettyprinter are produced automatically from a BNF definition of Gist's
syntax by a program named POPART. The full complement of commands and capabilities afforded
by the resulting tools is documented in [5]. A subset of these commands, sutficient for convenient
creation anc eciting of Gist specifications, is documented below. Each command has a short name.
mnemonic for the function it performs. Some commands also require an operand. A command is
invoked simp'y by typing its name (and operand) in response to the prompt "«" from the 10C
executive. (Each prompt is preceded by a number, which can be used in Programmer's Assistant
commands to refer to the corresponding |OC event.) If the command needs no operand, its name
should be followed immediately by a carriage return. without intervening spaces. If the command
needs an operand which is not Gist text, the command name should be followed by a space, and then
by the cperand and a terminating carriage return. If the operand is Gist text, the command should be
followed by a carriage return. then the Gist text {which may be spread across as many lines if

convenient) terminated by two periods and a carriage return.

The editor maintains at all times a specification being edited and a current focus (syntactic
constituent) within tha! specification. Initially, both are empty. The editing commands will be

described in two groups:

- .

--

8.4 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

* commands which alter the specification

* commands which change the editor’s focus within the specification

5.2.1 Commands which Alter Specification Text

«Set
Gist text

The Set command requires a single operand, a Gist text string. That text becomes the current
specification and the current focus.

~Replace
Gist text

The Replace command requires a single operand, a Gist text string. That text replaces the current

focus within the specification, and becomes the new focus.

The Replace command is also used to embed existing text in larger text. This is done by using the
special string "$$" to refer to the existing text within the embedding text. For instance, to replace the

Gist text “ship:captain” with "ship:captain:salary” either of the foliowing commands would sutfice:

«Replace
ship:captain:salary

«~Replace
$3:salary

+~ReplaceAll
Gist text .. ==> Gist text

The ReplaceAll command replaces every occurrence of the first text fragment, which appears as a
syntactic constituent of the current focus, with the second text fragment. The current focus is not

changed. This command is most useful for changing some identifier name in a specification.

~After
Gist text

“re After command adds its operand after the current focus. The current focus must be an

- .~e~ o' an “iterated field"” in the grammar. In Gist, this means a statement or declaration within a
» ‘ole specification within the list of roles of an action or relation declaration, etc. in general, it

.+ + ,mnt being added is the same “kind" of thing as the current focus constituent, the After

- s protably aliowed. So, for example, a type declaration can be added after any other

-, *ne After command. If, on the other hand, the current focus combines syntactically

s s

EDITOR, PRETTYPRINTER, AND FILE 170 5.5

with the new text to form a new constituent of the same "kind" as the current focus, the Replace
command should be used. So, to change a specification which read “officer:salary” to read
"officer:salary * 1.1" the Replace command, rather than the After command, is appropriate. The

After command does not change the current focus.

«~Before
Gist text

The Before command is like the After commanc, but places the new text immediately before the

current focus. within an iterated field.

+«Delete

The Delete command deletes the current focus, which must be an element of an iterated field or an
optional element. When deleting an element of an iterated field other than the final element, the
separator following the element is also deieted. For instance, deleting a statement in a block wili

delete the ";" following it as well.

No change to a specification is ever permitted if that change would result in a syntactically
incorrect specification. An attempt to make such a change will produce an error message indicating
a point in the text beyond which no attempted parse could progress. The specification and current
focus are left unchanged by the attempt.

5.2.2 Commands which Change the Editor’s Focus

«Find
Gist Text..

The text must be a complete syntactic constituent. Thus “salary” and "salary * 1000" a-e
acceptable, but "salary *" is not. The Find command looks for an identical constituent within or
beyond the current focus. The first one found becomes the new focus. If none is found, the focus is

nct changed.

«Top

The Top command changes the current focus to be the entire specification.

«In

If the current focus is an "iterated field" e.g., the statements of a block, the In command resets the
focus to the first element of the iterated field. Otherwise, the current focus is set to some immediate

subexpression of the focus.

5-6 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

«Qut

The Out command resets the focus to its immediate parent constituent.

Next integer

If the curren. focus is an element of an iterated field, the Next command can be used to change the
focus to another element of the field. The desired element is designated by an integer operand. The
positive integers designate has current focus as 1 and its successors as 2,3,.... The negative integers
designate the elements from the last (-1) back to the first. If the operand is omitted, the focus is reset

to its immediate successor in the iterated field.

«Previous

It the current focus is an element of a iterated field, Previous resets the focus to its predecessor in
that fieid.

5.2.3 PrettyPrinting

The command Pretty may be used at any time to display -a formatted version of the current editor
focus. The Gist prettyprinter automatically breaks the text into lines, inserting spacing and
indentation appropriately to enhance readability of the text. Examples of the format produced may be
seen in Sections 6.1 and 6.2.

5.2.4 Commands for Saving and Restoring Specifications
+«Read (filename>

The Read command expecis a single parameter, a Tops-20 filename. Read restores the
specification saved on the named file. The specification and current focus in effect are both replaced
by the specification read from the file. This file should be one created by the Write command. The

Read command is equivalent to using the editor's Set command and retyping the specification.

«Write <(filename>

Write makes a prettyprinted copy of the current specification on the named file.

SPECIFICATION TESTING 57

5.3 Specification Tesling
In order to test a specification, the specifier must have
* a Gist specification
* an “initial state” from which testing is carried out
* some behavior to be tested

A Gist specification consists of a block of declarations, bracketed by begin and end. The I0OC
expects these declarations to be augmented by one or more Gist statements placed, by convention, in
this outermost block of the specification following the declarations. It is the function of these
statements to establish an initial state from which testing is carried out. The actual test behavior is
then run by interaction with the Gist evaluator, which consists of interdependent compiler and

interpreter portions.

5.3.1 The Gist Declaration Compiler

In order to permit the declarations (of types, relations, etc.) to atfect the evaluation of the
commands used to test the specification, the I0C performs a compilation of the declarations
appearing in the specification. This compilation process is initiated by the command gist:

«gist
In response to this command. the IOC compiles the declarations and places the user in an
environment for interaction with the Gist evaluator. In this environment, intefactions are prompted by

the symbol "->", and numbered in a sequence independent from the numbering of interactions with

the editor To resume ed*ing operations, the user should type "OK" in response to the "->" promot.

5.3.2 The Gist Evaluator

The 1OC permits the user to provide Gist statements. predicates, and expressions interactively tor

evaluation -elative to the "current process state”. An initial state is established by the init command:

=Yinit
This command causes the evaluator to execute all statements in the specification’'s outermost block.

These statements are executed sequentially in order of appearance, and without the semantic effects

of any constraints in the specification, (including type requirements). It is currently the user's

5-8 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

3

responsibility to ensure that the resulting state is a valid one.'®

Typically, the initial state is
established by means of a single atomic statement, which creates an adequate process environment

for the desired testing.

,- Interactive testing relative to the current state is ordered by the ".." command:

D..
object expression, predicate, or statement

The text of the Gist constituent to be evaluated may extend across several lines of terminal input. The
final line must terminate with "..". Provided the input parses as one of the three syntactic classes ;
indicated, it is processed, according to its syntactic class, as follows:

* Object expressions are evaluated relative to the current state. If the expression has no
referent, "Failed...” will be printed. Otherwise, some referent of the expression will be
displayed. The current process state does not change.

* Predicates are also evaluated relative to the current state. The predicate's value, TRUE
or FALSE, is displayed. If the value is TRUE, and the predicate has leading existentiaily
quantified variables, a set of bindings for those variables is also displayed. Conversely, it
the value is FALSE and the predicate has leading universally quantified variables, a set of
bindings for these variables is displayed. The current process state does not change.

* Statements are executed from the current state. If the statement has any valid executions
some valid execution is carried out, and “success” is displayed. The final state of this
execution becomes the current process state, and is linked via the states traversed in
attaining it back to the previous current state. Otherwise "Failed...” is printed and the
current state remains unchanged. In this case the IOC command "why"

->why

will provide some indication of a reason for tailure of the statement.'®

"

The Gist constituent to be evaluated by the ".." command may make use of any types. relations,

attributes, and actions defined in the user’s current specification.

Since a Gist process state is independent of variable names, each interaction takes place in a bare
variable environment - variables may not be used freely in these inputs. They may of course establish

their own internal binding environments.

1E'Gist's semantics define legitimate transitions from valid states to new valid states. Until an initia! valiid state is established,
the constraints cannot be enforced.

16'\’his reason is a constraint violated along the "longest” partial execution path, as measured by a heuristic distance metric. } .

SPECIFICATION TESTING 59

5.3.3 Literal and Created Objects

Integer and character sequence tonstants may be included in specifications and 10C interactions
by use of Interlisp integer and string constants.”’ Constants of other base types are included by
using as an expression an identifier whose name does not contain a *." and which is not used as a
variable name in the lexical context in which it appears. All such uses of a given identifier refer to
some object, having that identifier as its "internal" name. All other objects are created by the
execution of a Gist create statement, and are given internal names consisting of the first few

characters of the objects type and several digits.'®

5.3.4 Input/Output Facilities

Although there are no defined 1/0 activities in Gist, the I0C provides a few basic facilities for

testing interactive parts of specifications.

Terminal input to a process may be provided by the pseudo expression GISTREAD. GISTREAD
(prompt-string) may appear as an object expression anywhere in a specification. The evaluator will
process this expression by printing the referent of prompt-string, which may be any Gist object
expression but is typically a string constant. The evaluator will then read a single Gist object
expression (typically a literal) from the terminal and its referent becomes the referent of the
GISTREAD expression.®

Terminal output is provided by the pseudo action GISTPRINT. GISTPRINT(object expression) may
appear as a statement anywhere in a specification. The reterent of the object expression is output to
the terminal. The output consists of the internal name of the object expression's referent, together
with its "boundary™ as specified in any boundary declaration for the referent’'s type. The Gist syntax
for boundary declarations is extended in the I0C to permit specification of a print boundary. For
example. the declaration:

bound employee for print by :salary, :isupervisor
would cause GISTPRINT, when printing an object of type employee, to print not only the object's
internal name but to display its salary and all other objects having it as their supervisor. In displaying

17F'Rea| numbers are not currently supported by the 10C.

1B'I’he 10C test tor object identity is based on these internal names. For this reason, literals should NOT be given names

consisting of characters foliowed by digits

1QGISTREAD may be considered 1o be a facility which afiows the user to simulate an unspecified portion of a gystem.

R NGO

5-10 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

the boundary, the values are themselves printed according to any print boundaries declared for their
types. This recursive printing of boundaries is cut off at a depth controlled by the user. The 10C
command

-> GISTPRINTDEPTH [integer]

resets the cutoff depth to the given integer. A depth of O indicates printing of an object's internal
name only. Depth N indicates printing an object's internal name, together with printing its print
boundary to a depth of N-1. The initial depth setting is 0.

Since all terminal 170, whether direct commands to the 10C or GISTREAD or GISTPRINT
interactions. is performed through Interlisp, transcripts of sessions may be made with Interlisp’'s
DRIBBLE facility. Terminal characteristics, such as linelength, may be established by the
conventional Interlisp mechanisms.

5.4 Debugging/Testing Aids

A primitive form of debugging can be obtained by interspersing GISTPRINT statements at strategic
points in a specification. Another facility is the ability to "trace" or "break" certain activity.

Tracing consists of printing information on the terminal in response to various state changes.
Breaking is similar to tracing. but also provides a pause in execution during which the user may
interact with the 10C. In particular. he may evaluate predicates and expressions relative to the
statement at which the break occurs. When satisfied, he gives an "OK" command and processing
continues.

Tracing and breaking are turned on by the IOC commands GTRACE and GBREAK:

=>GTRACE [name,, ..., name]
->GBREAK [name,, ..., name,]

where each name, may be:

* An action name, in which case invocations of the action are traced/broken. The action
name. together with the names of its formal parameters and corresponding actual
parameters are printed.

K]

* A relation name, in which case every insertion or deletion of a relationship in the relation

is traced/broken.

* An attribute name, in which case each change involving that attribute is traced/broken.

* A type name, in which case classification and de-classification of objects in the type is
traced/broken (including creation and destruction of objects in the type).

DEBUGGING/TESTING AIDS 511

The command forms:

->GTRACE [T]
->GBREAK [T]

can be used to trace/break all activity which may be traced/broken.

he user must be aware that in evaluating a statement, the evaluator is conducting a search for a
valid execution. Tracing and breaking takes place as the search progresses. Some of the broken or
traced activity may be taking place along paths of the search which will be abandoned, not leading to
valid executions.

Tracing/breaking may be turned off selectively by the commands:

->GUNTRACE [name,, ..., name]
->GUNBREAK [name,, ..., name]

T can be used as an operand to these commands to turn off all enabled tracing/breaking, regardiess
of whether it was enabled with the "T" operand.

5.4.1 Modifying a Specification

Atter creating and testing a specification, the user will likely want to make changes to it. This is
done by exiting the Gist evaluator (via the "OK" command) and giving the editor commands
necessary to make the desired change. Most changes to the specification will require re-analysis of
part(s) of the specification for the changes to affect further testing. Currently this is only possible by
reentering the Gist evaluator {via the "gist” command) and beginning further testing with the “init"
command, which re-establishes the "initial” state as the "current” state.

5.510C Coverage

Gist is still undergping frequent change, both to the syntax of established language constructs and
by additions to the language. Appendix | contains the Gist grammar used by the IOC as of October,
1980. This is a context free grammar in the notation used by the POPART system. The Gist editor

may be used to create any specification which is a "statement"” in this grammar.

The 10C evaluator is not capable of evaluating this full range of specifications. Among the

important Gist concepts not covered by the evaluator are:

* temporal reference (with a few minor exceptions)

* sets and sequences (multivalued attributes are handled, however)

S

5.12 GIST INITIAL OPERATING CAPABILITY DESCRIPTION

* orderings (except for the ordering of integers)
* generators
* demons
* pseudo-parallelism
In Gist, literal objects are normally introduced in the declarations of their types. The IOC
declaration compiler does not yet process these declarations. It is therefore necessary to establish

the type of any non-numeric literals used in the specification by means of the statement(s) setting up
the initial state. This is accomplished by the inclusion of statements of the form:

ingert literal isa type

e

61
6. I0C TRACES

6.110C TRACE--PSLEXAMPLE

Mt o

Below is a trace of a user interacting with the 10C to explore behavior of a simplitied specification

of the Program Support Library.
88-Read PSL.GST

89-Pretty
begin
type project{any library::unique);
type library(any file::unique);
type file(any unit::unique);
type unit(any unit-contents:line)bound destroy
by equiv:unit-contents;
type line(any chars:character,any includes-unit:unit);
type character;

relation
UNIT-INCLUDES(includor:unit,included:unit)
definition
there exists line|includor:unit-contents=1ine and ‘

(line:includes-unit=included or
UNIT-INCLUDES(line:includes-unit,included));

always prohibited CIRCULAR-INCLUSION there exists unit]
i - UNIT-INCLUDES(unit, unit);
y type update-command(current-file:file,any update-sub-commands:
update-sub-command); v -
type update-sub-command(optional current-unit:unit)
supertype of<add-command;
purge-command;
change-command>;

type add-command(any &add-data:line);
type purge-command;
type chenge-command({any change-sub-commands:change-sub-command);
type chence-sub-command supertype of<insert-command;
modify-command;
: delete-command>;
type insert-command(any insert-data:line);
type modify-command(optional line-to-mod:Vine,oldchar:character,
newchar:character);
type delete-command(any line-to-del:line);

6-2 10C TRACES

action
UPDATE[update-command]let file=update-command:current-file,
up-com:update-sub-command=update-~command:update-sub-commands
definition
case up-com of add-command
=)ADD[file,up-com]:
purge-command
=>PURGE[up-com:current-unit];
change-command
=>CHANGE[up-com:current-unit,up-com];
end case;

action
ADD[file,add-command]
definition
atomic create unit.1;
insert all unit.l:unit-contents=add-command:add-data;
insert file:unit=unit.1
end atomic;

action
PURGE[unit]
precondition not there exists including-unit:unit,
tinelincluding-unit:unit-contents=1ine
and line:includes-unit=unit
definition
destroy unit;

action
CHANGE[unit,change-command]let ch-com:change-sub-commands=
change-command:change-sub~-commands '
definition
case ch-com of insert-command
=>INSERT[unit,ch-com];
modify-command
=>MODIFY[unit,ch-com];
delete-command
=>DELETE[unit,ch-com];
end case;

action
_ INSERT[unit,insert-command]
definition
insert all unit:unit-contents=insert-command:insert-data;
action
DELETE[unit,delete-command]
definition
delete all unit:unit-contents=delete-command:line-to-del;

1I0C TRACE--PSL EXAMPLE 6-3

action
MODIFY[unit ,modify-command]let oldchar:character=modify-command:

oldchar newchar:character=modify-command:newchar

3 definition

if there exists 1ine|{modify-command:line-to-mod=1line
then DO-MODIFY[line,unit,oldchar,newchar]
else DO-MODIFY[(a 1ine|DO-MODIFY()ine,unit,

$.8)asof ever),
unit,oldchar,newchar];

action
DO-MODIFY[1ine,unit,character.1l,character.2]
precondition line=unit:unit-contents
definition
if line:chars=character.1
then begin
! delete line:chars=character.1;
insert line:chars=character.2
end;

atomic insert myproject isa project;
insert mylibrary isa library;
insert myfile isa file;
insert myproject:library=mylibrary;
insert mylibrary:file=myfile;
insert chara isa character;
insert charb isa character; T
insert charc isa character;
insert chard isa character;
insert chare isa character;
insert charz isa character;
insert unita isa unit;
insert myfile:unit=unitea;
insert unitb isa unit;
insert myfile:unit=unitb:
insert unitc isa unit;
insert myfile:unit=unitc;
insert linea isa line;
insert linea:chars=chare;
insert linea:includes-unit=unitb;
insert unita:unit-contents=1inea;
insert lineb isa line;
insert lineb:chars=charb;
insert unitb:unit-contents=lineb;
insert linpecd isa line;
insert linecd:chars=charc;
» insert linecd:chars=chard;
E insert linecd:includes-unit=unita;
insert unitc:unit-contents=1inecd; i
' insert linee isa line;
f insert linee:chars=chare;

6-4

insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

insert
insert
insert
insert
insert
insert
insert
insert

purgel i
purgeil:c
updatel
updatel
updatel
delete?
deletel:
change?2
change?
change?
update?
update2
update2

sa purge-command;
urrent-unit=unitb;
isa updste-command;

:current-file=myfile;
:update-sub-commands=purgel;

isa delete-command;
line-to-del=linea;
isa change-command;

:change-sub-commands=delete?;
:current-unit=unita;

isa update-command;

:update-sub-commands=change?2;
:current-file=myfile;

lined isa line;
line3:includes-unit=unitc;

insertd
insert3:
changed
change3l:
change3:
updated
updated:
updatel:

modify4

modifyd:
modify4:
modify4:
changed

changed:
change4:
updated

updated:
updated:

insert$
insertb:
changeb
change5:
changeb:
updateb
updateb:
updateb:

isa insert-command;
insert-data=line3;

isa change-command;
change-sub-commands=insert3;
current-unit=unita;

isa update-command;
update-sub-commands=change3;
current-file=myfiie;

isa modify-command;
line-to-mod=1linecd;
oldchar=charc;
newchar=charz;

isa change-command;
change-sub-commands=modify4;
current-unit=unitc;

isa update-command;
update-sub-commands=changeé;
current-file=myfile;

isa insert-command;
insert-data=linee;

isa change-command;
change-sub-commands=insert5;
current-unit=unitc;

isa update-command;
update-sub-commands=change5;
current-file=myfile;

10C TRACES

10C TRACE--PSL EY AMPLE

insert modify6 isa modify-command;

insert modify6:o0ldthar=chard;

insert modify6:newcharschara;

insert change6 isa change-command;

insert change6:change-sub-commands=modify6;
insert changeb:current-unit=unitc;

insert update6 isa update-command;

insert updateb:update-sub-commands=change6;
insert upcateb:current-fTile=myfile

end atomic

end. .

‘80-gist

type "hel
(re)proce
3->GTRACE
T

4->init
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting

L X N X 2 G I s T LA X ¥ J

p” for command list
ssing deciarations

(1]

myproject isa project in c¢x:2

mylibrary isa library in cx:2

myfile isa file in cx:2

myproject : library = mylibrary in cx:2
mylibrary : file = myfile in cx:2
chara isa character in cx:
charb isa character in cx:
charc isa character in cx:
chard isa character in cx:
chare isa character in cx:
charz isa character in c¢cx:
unita isa unit in cx:2
myfile : unit = unita in ¢x:2

unitb isa unit in cx:2

myfile : unit = unitb in cx:2

unite ise unit in cx:2

myfile : unit = unitc in cx:2

linea isa l1ine in cx:2

linea : chars = chara in ¢x:2

linea : includes-unit = unitb in cx:2
unita : unit-contents = linea in ¢x:2
lineb is& line in cx:2

lineb : chars = charb in ¢x:2

unitb : unit-contents = Jlineb in ¢x:2
Jinecd isa line in ¢x:2

linecd : chars = charc in cx:2

linecd : chars = chard in ¢cx:2

linecd : includes-unit = unita in cx:2
unitc : unit-contents = linecd in ¢x:2
linee isa line in ¢x:2 :
linee : chars = chare in cx:?

purgel isa purge-command in cx:2

PNDrPONNDNN

6-5

l 02 361 UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO--ETC F/6 9/2
DESI6N SPECIFICATION VALIDATION.(U)
JUN 81 R M BLAZER F30602-79-c-00'5z
et Asann ADC=TR=81~10;

i EnD
oare
e

B8 =81
oric

6-6

inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting
inserting

5->..

purgel

updatel
updatel
updatel
delete2
delete2
change?2
change2
change?2
update2
update2
update?2

current-unit = unitb in c¢cx:2
isa update-command in ¢cx:2
current=-file = myfile in cx:2

update-sub-commands = purgel in cx:2

isa delete-ccmmand in cx:2
line-to-del = linea in cx:2

isa change-command in ¢cx:2
change-sub-commands = delete?2
current-unit = unita in cx:2

isa update-command in ¢cx:2
update-sub-commands = change?
current-file = myfile in c¢x:2

1ine3 isa line in c¢x:2

Tined

insertd
insertd
change3
changed
change3
updatel
update3
updated
modify4
modify4
modify4
modify4
changed
change4
change4
vpdated
update4
updated
insert$
insert5
changeb
changeb
changeb
updateb
update$
updateb
modify6
modify6
modify6
changef
changeb
changeb
updateb
updateb
updateb

charb::chars..

linebd
6->..

Tineb:chars..

includes-unit = unitc in cx:2
isa insert-command in cx:2
insert-data = 1ine3 in ¢x:2
isa change-command in cx:2
change-sub-commands = insert3
current-unit = unita in ¢cx:2
isa update-command in cx:2
update-sub-commands = change3
current-file = myfile in ¢x:2
isa modify-command in cx:2
line-to-mod = linecd in cx:2
oldchar charc in c¢cx:2
newchar charz in cx:2
isa change-command in cx:2
change-sub-commands = modify4
current-unit = unitc in cx:2
isa update-command in cx:2
update-sub-commands = change4
current-file = myfile in cx:2
isa insert-command in ¢x:2
insert-data = linee in cx:2
isa change-command in cx:2
change-sub-commands = insertd
current-unit = unitc in ¢x:2
isa update-command in cx:2
update-sub-commands = change5b
current-file = myfile in cx:2
isa modify-command in cx:2
oldchar = chard in ¢x:2
newchar = chara in ¢x:2
isa change-command in cx:2
change-sub-commands = modify6
current-unit = unitc in cx:2
isa update-command in cx:2
update-sub-commands = change6
current-file = myfile in cx:2

in

in

in

in

in

in

in

in

in

in

cx:2

cx:2

cx:2

cx:2

cx:2

cx:2

cx:2

cx:2

cx:2

cx:2

10C TRACES

bt d

3

10C TRACE.-PSL EXAMPLE 6-7

charb

7->..

linecd:chars..

charc

8->redo 7

chard

9->redo 7

charc

10->reco 7

chard

11->redo 7

charc

12->redo 7

chard

13->..

exists file | file:unit:unit-contents = linea..
(TRUE ((file . myfile)))
14-> .,
linee::unit-contents..
Failed...

15->..
UPDATE[updatel]..

UPDATE :
update-command = updatel

PURGE :

unit = unitb
Failed...
16->why

failing precondition:
not there exists including-unit:unit,line | including-unit:unit-contents=
line end line:includes-unit=unit.,

vVariable bindings:
((unit . unitb))

17->..
PURGE[unita]..

PURGE :

unit = unita
Failed...
18->why

failing precondition:
not there exists including-unit:unit,line | including-unit:unit-contents=
line and line:includes-unit=unit..

Variable bindings:
((unit . unita))

19->,.
UPDATE[update2]. .

6-8 {OC TRACES

UPDATE:
update-command = update2

CHANGE :
unit = unita
change-command

change2

DELETE:

unit = unita
delete-command delete2

! deleting unita : unit-contents = linea in ¢x:7

! DELETE completed

CHANGE completed

UPDATE completed

success

20->..

unita:unit-contents..

Failed...

21->..

destroy myfile..

deleting myfile isa file in c¢x:11

deleting mylibrary : file = myfile in cx:11
deleting myfile : unit = unitc in cx:11

deleting myfile : unit unitb in cx:11

deleting myfile : unit = unita in cx:11

deleting update6 : current-file = myfile in cx:11
deleting update5 : current-file myfile in c¢x:11
deleting updated4 : current-file = myfile in cx:11
deleting update3 : current-file myfile in ¢x:11
deleting update2 : current-file myfile in cx:11
deleting updatel : current-file myfile in cx:11
Failed...

22->why

H

count spec constraint violation:
((current-fileofupdate-command myfile updatel)
(1 . 1)

1 0)

23->77 10 thru 20

ey e d T
Bk,

10. redo 7
->.. linecd : chars
chard

11. redo 7
->.. linecd : chars
charc

12. redo 7

) ->.. Yinecd : chars

! chard

13, ->.. exists file | file : unit : unit-contents = linea
(TRUE ((file . myfile}))

14. ->.. linee :: unit-contents

(X4

IOC TRACE--PSL EXAMPLE 6-9
Failed...

15. =->.. UPDATE %[updatel %] \
Failed... : .

16. ->why k

17. ->.. PURGE X[unita %]

Failed...

18. <~>why
F 19. ->.. UPDATE %[update2 %]
< success
! 20. ->.. unita : unit-contents
’ Failed...

23->..

UPDATE[updatel].

UPDATE:

update-command = updatel

PURGE :

unit = unitb :
deleting unitb isa unit in cx:14

deleting myfile : unit = unitb in cx:14
deleting linea : includes-unit = unitb in cx:14
deleting unitb : unit-contents = lineb in cx:14
deleting purgel : current-unit = unitb in cx:14
deleting lineb isa 1ine in cx:14 ’

deleting lineb : chars = charb in cx:14
deleting unitb : unit-contents = lineb in cx:14
PURGE completed

UPDATE completed

success

24-> ..

insert lineg isa line..

inserting lineg isa line in cx:17

success

25->..

insert lineg:chars = charb..

inserting lineg : chars = charb in cx:18
success

26-> ..

insert unitg isa unit..

inserting unitg isa unit in ¢cx:19
Failed...

27->why

count spec constraint violation:
((unitoffile unitg unitg)
(1.1)
2 0)

28->..
atomic

6-10 10C TRACES

insert unitg isa unit;
insert unitg::unit = myfile
end atomic.. :
inserting unitg isa unit in cx:20
inserting myfile : unit = unitg in cx:20
success
29->..
insert unitg:unit-contents = lineg..
inserting unitg : unit-contents = lineg in ¢x:21
success
- 30->..
5 exists unit | UNIT-INCLUDES(unit,unitg)..
{ { FALSE)
3 31->..
insert linea:includes-unit = unitg..
; inserting linea : includes-unit = unitg in cx:22
| success
32->..
insert unita:unit-contents = linea..
inserting unita : unit-contents = linea in ¢x:23
success
33->..
exists unit | UNIT-INCLUDES(unit,unitg)..
(TRUE ((unit . unitc)))
34->redo 33
(TRUE ({unit . unita)))
35->redo 33
5 (TRUE ((unit . unitc)))
: 36->..
a unit
unita
37->..
a unit..
unitg
38->redo 36 thru 37
unitc
unitc
39->redo 38
unita
unitg
40->redo 38 thru 39
unite
unita
unite
unitg
41->77 15 thru 20

15. ~=>.. UPDATE %[updatel %]
) Failed. ..
f 16. ->why

o 17. ->.. PURGE %[unite %] _ ;A
y Failed... : } y
']

tOC TRACE--PSL EXAMPLE

18.
19,

20.

~>why

->.. UPDATE %[update2 %]
success

->.. unita : unit-contents
Failed...

6-12 IOC TRACES

6.2 J0C TRACE -- CAMELOT EXAMPLE

A AR A A 5

Below is a trace of a user interacting with the 10C to explore behavior of the CAMELOT
specification. This is a specification of a process involving people and familial relationships. it was

Rk o et

{ created for the purpose of testing and demonstrating I0C capabilities.

88«Read CAMELOT.GST

93+«Pretty
. begin
Vi type person(any child:person::0 through 2,sex,optional spouse:person::
i optional)
bound print
by=:sex,=::child;
type sex;
always prohibited OEDIPUS~COMPLEX there exists person |
person:spouse=person:chiild;
always prohibited INCEST there exists person.l,person.2 |
(person.1l::child=person.2::child)and(person.1:spouse=person.2);
always prohibited SPOUSES«OF«SAME«SEX there exists person.1,
person.2 |
{person.1l:spouse=person.2)and(person.l:sex=person.2:sex);

action
MARRY[person.1,person. 2]
definition atomic insert person.l:spouse=person.2;
insert person.2:spouse=person.1
end atomic;

action
MAKECHILD[person]
precondition there exists person.l | person:spouse=person.1
let gender:sex=a sex
definition atomic create person.3;
insert person.3:sex=gender;
insert person:child=person.3;
insert person:spouse:child=person.3;
case gender of
male=>GISTPRINT["It's a boy!”]:
female=>GISTPRINT["It's a girl!"];
end case
end atomic;]

action
DIVORCE[person.1,person.2]
precondition person.l:spouse=person.2
definition atomic delete person.i:spouse=person.Z;
delete person.2:spouse=person.l
end atomic;

10C TRACE -- CAMELOT EXAMPLE 6-13

TTITE

atomic insert male isa sex;

B insert female isa Sex;

insert arthur isa person;

g . insert arthur:sex=male;
insert guenevere isa person;
insert guenevere:sex=female;
insert lancelot isa person;
insert larcelot:sex=male

end atomic
end. .

94«gist

(LR X J G I S T LA XX]

type "help"” for command list
(re)processing declarations
2->GISTPRINTDEPTH[1]

1

3->GTRTACE[T]

=GTRACE

T

4->init

inserting male isa sex in ¢x:2
inserting female isa sex in ¢x:2
inserting arthur isa person in ¢x:2
inserting arthur : sex = male in c¢x:2
inserting guenevere isa person in cx:2
inserting guenevere : sex = female in cx:2
inserting lancelot isa person in cx:2
inserting lancelot : sex = male in cx:2

5->..

MARRY[arthur,guenevere]..

MARRY :

person.1 = arthur 1sex = male
person.2 = guenevere :sex = female

inserting arthur : spouse = guenevere in cx:4
inserting guenevere : spouse = arthur in cx:4

MARRY completed ﬂ
success

6->..
MAKECHILD[arthur]..

MAKECHILD:
(person = arthur :sex = male

inserting per0029 isa person in cx:7
inserting per0029 : sex = male in cx:7
inserting arthur : child = per0029 in ¢x:7

i
4
W
?

© ey —

6-14 10C TRACES

inserting guenevere : child # per0029 in cx:7
It's a boy!

MAKECHILD completed

success

7->..

arthur:child:sex .

male

8->..

guenevere:child:sex

male

9->.,

male::sex..

per0029

10->redo

lancelot .
11->.. ;
per0029::sex .. ‘
Failed...

12->..
per0029::child
guenevere

13->redo

arthur

14->redo 12 thru 13
guenevere

arthur

15->..
male::sex::child..
guenevere

16->redo

guenevere

17->0K

-

95«In

F U

96«Next -1

97«Pretty

atomic insert male isa sex;
insert female isa sex;
insert arthur isa person;
insert arthur:sex=male;
insert guenevere isa person;
insert guenevere:sex=female;
insert lancelot isa person;
insert lancelot:sex=male

end atomic..

98«Before

relation PARENT«IN«LAW(z:person,y:person) definition z:spouse::child=y ..

-

99«Top

2+gist

IOC TRACE .- CAMELOT EXAMPLE 6-15

[L X2 G IS T esee

type "help” for command list
(re)processing declarations

18->GUNTRACE[T]
NIL
19->arthur:spouse

v.b.a.

arthur:;spouse

20->..

arthur:spouse

Failed...

21->UNDO 16

redo undone.

22->..

arthur:spouse

guehevera

23->..

exists pl:person,p2:person|PARENT«IN-LAW(p1,p2)..
(FALSE)

24-> .,
MARRY[lancelot,arthur:child]..

MARRY :
person.1 = lancelot :sex

male

person.2 = per0029 :sex = male
::child = arthur
guenevere

inserting lancelot : spouse = per0029 in cx:10
inserting perC029 : spouse = lancelot in ¢x:10
Failed...

25->why

Constreint Violation:
always prohibited SPOUSES«OF+SAME«SEX there exists person.1,
person.2 |
(person.1:spouse=person.2)and(person.1:sex=person.2:sex)..

Variable bindings:

((person.1 . lancelot) (person.2 . per0029))
NIL

26->..

MAKECHILD[arthur]..

MAKECHILD:
person = arthur :sex = male

inserting perC031 isa person in cx:12
inserting per0031 : sex = male in cx:12
inserting arthur : child = per0031 in cx:12
inserting guenevere : child = per0031 in cx:12

-
g
g-
|

6-16 JOC TRACES

It's & boy!
MAKECHILD completed
success

27->redo

MAKECHILD:
person = arthur :Sex = male

inserting per0032 isg¢ person in cx:15
inserting per0032 : sex = female in cx:15
inserting arthur : child = per0032 in cx:15
inserting guenevere : child = per0032 1in cx:15

It's a girl!

MAKECHILD compieted

success

28->..

exists pl:person,p2:person|PARENT-IN«LAW(p1,p2)..

(FALSE)

29->..

MARRY[lancelot,arthur:child]..

MARRY ;

person.1 = Jancelot :Sex = male

person.2 = per0032 :sex = femaie
::child = arthur

guenevere

inserting lancelot : spouse = per0032 in c¢cx:18
inserting per0032 : spouse = lancelot in cx:18
MARRY completed

success

30->..

exists pl:person,p2:person|PARENT<IN«LAW(p1,p2)..
(TRUE ((p1 . Tancelot) (p2 . guenevere)))
31->redo

(TRUE ((p1 . lancelot) (p2 . guenevere)))

32->..

Joop {a person|PARENT«IN«LAW(lancelot,person)) do GISTPRINT[person]..
guenevere :sex = female

arthur :sex = male

success

e

71

7. DESIGN FOR A GIST SPECIFICATION
VALIDATION FACILITY

7.1 OBJECTIVE

The objective of a Gist Specification Validation Facility will be to determine the feasibility of
validating a functional specification, treated as an og 2rational system prototype, through observation
of its behavior on both concrete and symbolic Zata. Existing technoiogy will be extended to develop
and demonstrate a prototype tool which aids a system design specialist in generating, documenting,

and validating operational (executable) software requirements specifications.

7.2 BACKGROUND

Formal specifications act as a contract between clients and implementors. Since the
implementation costs are so high and the implementation delays so long, it is crucial that the formal
specification accurately portray the client's needs. Much time, money, and effort has been wastec

because of mismatches between specifications and client needs.

This effort attempts to mitigate this problem by developing a methodology for using formai
specificaticns as system prototypes and validating them through observation of their behavior

produced by symbolic evaluation.

There are two key technical aspects to this approach. First, the creation of a high-level formal
operational specification language and an interpreter of tnat language. This enables the formal
spacifications 10 be used as a prototype. Second. a symbolic evaluator of this formal specification
language which enables entire classes of test cases to be explored simultaneously. Such collapsing
of the space of test cases for the prototype, enables it to be "exhaustively” tested to ascertain

whether it meets client needs.

Both of these capabilities exist in rudimentary form in the SAFE project at ISI, and their extraction
from SAFE and extension are the foundation of this effort. Under this contract we have provided the
first of these two required capabitities: the creation of a formal operational specification language and
an interpreter of that language (see Chapters 2 and 5). An initial operating capability (10C) exists (see
Chapter 5) which allows a user/analyst to enter input data required by a formal specification
(prototype) and "run" the prototype, monitoring selected' events or breaking upon specified
situations, as with normal DDT like deb'uggers‘ except that all interactions are at the conceptual

specitication level. rather than the low-level representation-dependent implementation level.

7-2 DESIGN FOR A GIST SPECIFICATION VALIDATION FACILITY

Since symbolic evaluation is so central to this effort, we will explain it in more detail here before

describing our approach. The purpose of symbolic execution is 10 expose the behavior of a

specification on a class of inputs rather than just on a single test case as would occur with a normal

(nonsymbolic) evaluator. This capability arises from the ability to recognize assumptions implicit in

| the specification and to incorporate them as fuller descriptions of the incomplete (symbolic) inputs,
s and from the ability to explore all conditional paths in the specification and to annotate the behavior
f of such paths with their conditionality.
F

The size of the class o test cases being explored by a symbolic execution depends upon the
degree of "symbolicness” of the input and initial data base description, and upon the amount of
refinement provided by the user/analyst during the symbolic execution. “"Symbolic” and "Concrete"
should be recognized as the endpoints of a spectrum of degrees of completeness of description. At
the concrete endpoint, the description of the input (and initial data base) is complete so that all

information required during evaluation is already present. Therefore evaluation can proceed in a

normal (nonsymbolic) manner, with data accessed as needed and conditional branching determined

by the available concrete data. A single test case execution results.

As the description of the input (and initial data base) becomes more symbolic (incomplete), some of

the information needed during evaluation is not available. One of two options must be selected

before evaluation can proceed:

1. The needed information is provided (dynamically) by the user/analyst.

2. The needed information is treated "symbolicalty” so that its presence and value are
unknown and the full conditionality of the specification (with respect to this needed
information) is explored.

With the first option, the symbolic evaluation is being used to incrementally define a test case, or
class of test cases, of interest. The symbolic evaluation, rather than the user/analyst, determines

what information is relevant for the definition of different test cases.

With the second option, a class of test cases being simultaneously explored is formed. The more
this option is employed, the larger the class of test cases becomes. However, the complexity of the
behavior of the specification on that class of test cases also rises proportionately so that
understanding that behavior becomes correspondingly more difficult.

Thus a balance must be struck between reducing the number of classes of test cases to explore
and increasing the complexity of behavior of the specification on those classes. For this reason, the

BACKGROUND 7-3

symbolic evaluator will be interactive so that the user/analyst can control the definition of test cases

class size and their corresponding complexity.

A short example may help clarify these issues. The example is taken from the Program Support
Library, that we have formally specified under this contract (see Chapter 3). Let's assume that we
want to test the specification's behavior on insertion of lines into an existing unit. We therefore create
a symbolic command leaving unspecified: the sequence of lines to insert, the unit into which the
insertion is to be made, and the specification of the location at which the insertion is to occur.
However, since we are only interested in the insertion behavior, we concretely specify the command
type as an insertion command. With this set of choices the initial data base is merely the symbolic
command that we've created and it is passed as the input to the specification.

We now start the symbolic execution. The specification first determines what type of command is
being processed. Since this is concretely specified as an insertion command, execution proceeds
normally. Next, the specification attempts to access the unit specified in the command. Since this
was unspecified, the symbolic evaluator asks the user/analyst whether he wants to make a concrete
choice or not. !f the user/analyst chooses to supply a concrete unit, then he either specifies an
existing one (we have assumed that none were predefined in the initial data base) or creates a new
one specifying whatever attributes he desires. Such dynamic specification of concrete data is simply
a need driven incremental definition of the initial data base. On the other hand, if he doesn’t want to
supply a concrete unit, the system will create a new symbolic unit and proceed.

After several more information-gathering steps similar to the one above, the symbolic evaluator
reaches the crucial step for this class of test cases--whether the insertion point exists within the
sequence of lines which constitute the contents of the unit. If both the sequence and the insertion
point are concrete. then the insertion point either is in the sequence or not, and this can be
detérmined by normal evaluation. On the other hand, if either or both values are symbolic, there is no
vi2y to make this determination. In such situations, the user/analyst is asked which of three options
should be explored.

1. Pursue the TRUE branch of the predicate by constraining the symbolic value(s) so that
the pregicate would be TRUE.

2. Pursue the FALSE branch of the predicate by constraining the symbolic value(s) so that
the predicate would be FALSE.

3. Pursue bothbranches by leaving the decision symbolic. This enlarges the class of test
cases being explored.

7-4 DESIGN FOR A GIST SPECIFICATION VALIDATION FACILITY

Let's assume that the third option is selected by the user/analyst. The symbolic evaluator would
then pursue branches separately by suitably constraining the symbolic value(s) in each branch. The
activity of each branch would be marked by the conditionality of the predicate so that after the
branches joined, the system could determine the conditionality of the respective behaviors and thus

their interaction with iater activity.

In this specific case, this dual exploration is pa.ticularly simple since one branch terminates in an
error (the insertion point is not within the contents of the unit) and thus the branches do not rejoin.
It's quite evident that as the size of the ciass of test cases being explored grows, the difficulty of
clearly explaining this behavior in terms of the internal branch points increases. We expect such
explanation capabilities to be the major portion of this effort.

7.3 APPROACH

This two-year eftort will build upon the foundation established by the existing contract via a
continued phased introduction of capabilities from the SAFE project to extend the I0C into the

symbolic evaluation-based specification validation facility required.

First, SAFE capabilities to record and interrogate execution behavior will be integrated into the 10C.
This is necessary because the existing IOC only maintains a dynamically changing "current state” of
the world being modeled in the relational data base. Since we are interested in explaining the
behavior of the system (i.e., its sequence of actions) which produced some final state. rather than
merely describing the final state, recording and saving the intermediate activify is crucial. Such
recording produces a data base of behavior which can be accessed to provide summarized
descriptions of activity used to validate the specification. To obtain such summarized descriptions, a
tool which interrogates this data base and organizes the information it contains into activity
summaries (explanations of behavior) must be built. This is the major new research proposed under
this contract. To gain experience with creating such summaries and to provide a fallback position in
case such automatic activity summarization proves infeasible, a set of interactive user/analyst

commands for examining the recorded behavior will first be provided.

At this point, a capability would exist for validating formal operational specifications by analyzing
their behavior on concrete test cases. But even at the specification level, the number of concrete test
cases that would have to be explored to adequately validate the specification is overwhelming. This
difficulty can be overcome by integrating the symbolic execution capability from the SAFE project into
this validation facility (as an extension to the language interpreter) and extending the summarization

capability to include the symbolic data in the recorded behavior.

—

APPROACH 7-5

7.4 PLAN

The history recording and interrogation facility from the SAFE system will be extracted and
integrated into the 1OC. This facility records execution behavior and provides low-leve! operations
for examining this behavior. Then, a set of high-level user (analyst} commands for examining the
recorded behavior will be provided. These commands should provide the ability for the user to move
back and forth in the history by describing desired states (via GIST specification language
predicates). These commands should also provide the analyst with the ability to determine which
portions of the specification are responsible for each piece of behavior.

Next a tool which analyzes a recorded history and provides a summary description will be built.
This tool will use the structure of the specification and rules of program description 1o summarize the
recorded behavior.

Then, the symbolic execution package from SAFE will be extracted and modified so that it
interactively receives guidance from the user/analyst as to which execution paths to explore. A
bookkeeping tacility to keep the user/analyst informed as to which paths have been explored and

which have not yet been explored will also be provided.

Finally, the automatic summarization tool wili be extended to include descriptions of symbolic

behavior.

anihuas.

Appendix |
GIST GRAMMAR

Below is the grammar of Gist used in generating the IOC. The form of the grammar is that accepied
by the POPART system. The grammar is context free, represented as a series of productions of the

form
nonterminal : = rewrite

with the following conventions:

* The rewrite for a nonterminal symbol is a sequence of nonterminal symbols and terminal
symbols.

* Terminal symbols are preceded by a quote mark (').
* Alternative rewritings of a nonterminal are separated by bars (|).

¢ Lines of the form
NOTE ...;

are comments about the grammar, not productions of the grammar.

* Optional constituents are enclosed in braces {}.

* The nonterminal LEXEME is predefined to allow any sequence of letters and digits as its
rewrite.

* A revrrite of the form
nonterminal > predicate

indicates that subset of rewrites of the nonterminal which satisfy the named unary
predicate. The predicates are not documented here.

NOTE 1 Declaration section;

DeclarationStatement := IndividualDeclaration
{ LocalDefinitions)}
{ IndividualDefinition } .
{ ConstrainingDeclarations };

IndividuaiDeclaration := TypeDeclaration |
BoundaryDeclaration |
RelationDeclaration |
ProhibitDeclaration |
RequireDeclaration | i
DerivationDeclaration |
ActionDeclaration |
DemonDeclaration ;

LocalDefinitions := 'let LocalDefinition + ',

E—

9

\-2

In

Co

BoundaryDeclaration := ‘boundary { Name } BoundarySpecification;

TypeDeclaration := 'type { Name } { '(AttributeSpec * ', ") }

GIST GRAMMAR

LocalDefinition := Role '= ObjectExpression;
dividualDefinition := 'definition (Statement | Predicate | TypeExpression |
ObjectExpression):

nstrainingDeclarations := ‘where DeclarationOrComment ¢+ '; { '; } 'end:
DeclarationOrComment := DeclarationStatement | CommentStatement :

BoundarySpecification := Linkage * ', ;
Linkage := LinkClass Link;
LinkClass := EquivalenceName | Predicate
fquivalenceName := '= | 'equiv | "identical ;
Link := AttributeRelationship AttributeName;

AttributeRelationship := ': | '::

{ TypeRelationQuatlifier + };
AttributeSpec := { CountSpec } AttrvbuteName
{ ': TypetExpression } { ':: CountSpec# };
AttributeName := RoleName ;
CountSpec := CountSpecConstant | IntegerRange | Integer |
NestedCountSpec

IntegerRange := Integer ‘through Integer#;

NestedCountSpec := '(CountSpec + ', ') :
CountSpecConstant := ‘unique | 'optional | 'multiple | 'any;
TypeRelationQualifier := TypeQualifier | RelationQualifier ;
Name := LEXEME |> IdentifierFilter ;

Identifier := LEXEME |> IdentifierFilter ;

TypeExpression := TypePrimitive ;
TypePrimitive := StructureSpecification |
SetTerm |
DeclarationStatement :
StructureSpecification := StructureType 'of TypeExpression; H
StructureType := PredefinedStructure | Identifier ;]
PredefinedStructure := 'set | 'sequence ; :
RelationDeclaration := 'relation { Name } '(Role * ', ')

ProhibitDeclaration := ‘'always 'prohibited { Name } Predicate:
RequireDeciaration := 'always 'required { Name } Predicate: 3
DerivationDeclaration := ‘'derivation { Name } '(Role t ', ') i

{ RelationQualifier + } ; '
Role := RoleName { ': TypeExpression } 3
RoleName := Identifier { '. Distinguisher }
Distinguisher := IntegerConstant | Identifier
IntegerConstant := LEXEME |> Integer? ;
Integer := LEXEME |> Integer? ;

‘whenever Predicate 'conclude Pattern t* ', ¢

ActionDeclaration := ‘action { Name } { '[{ Role * ', } ']}
{ ActionQualifier + } ;

ActionQuatifier := ActionPrecondition |
ActionPostcondition
ActionPrecondition := 'precondition Predicate;
; ActionPostcondition := ‘'postcondition Predicate;

DemonDeclaration := 'demon { Name } '(Role * ', ')
‘trigger Predicate
‘response Statement

3 NOTE 2 Statement definitions;

E Statement := DeclarationStatement |
RequireStatement |
ProhibitStatement |
DataPrimitiveStatement |
AtomicStatement |
BiockStatement |

¢ | ConditionalStatement |
CaseStatement |
ActionlInvocation |
LoopingStatement |
CommentStatement |
ContinuationStatement |
AttemptStatement |
ChooseStatement |
TogetherStatement ;

RequireStatement := ‘'require Predicate;

ProhibitStatement := 'prohibit Predicate;
DatePrimitiveStatement := Datalnsertion | DataDeletion | DataUpdate |
ObjectCreation | ObjectDestruction | ObjectCopy

Datalnsertion := 'insert { A1l } Pattern;
DatzDeletion := 'delete { A1l } Pattern:
DataUpdate := ‘'update { A1l } { AttributeRelationship }
RoleName OfExpressionOrRelation 'to Expression;

OfExpressionOrRelation := 'in Relationship | 'of ObjectExpression ;

ObjectCreation := 'create CreationSpecification t* ',
{ 'with Pattern } ;
CreationSpecification := RoleName { ': NameOrPattern } { 'wrt Boundary}:
NeameOrPattern := Pattern | RoleName ;

Pattern := ldentity | Containment | Relationship
ObjectDestruction := 'destroy { A11 } ObjectExpression { ‘wrt Boundary }:
ObjectCopy := 'copy CreationSpecification * ', ; *

A1l := 'all ;

AtomicStatement := 'atomic Statement t '; ‘end ‘atomic;
BlockStatement := 'begin Statement * '; ‘end;

ConditionalStatement := 'if Predicate 'then Statement
{ ElselfClause + } { 'else Statement# };
CaseStatement := 'case ObjectExpression 'of CaseCase * ': { '; }
‘end 'case R
CaseCase := ObjectExpression 's> Statement; 4

1-4 GIST GRAMMAR
ElselfClause := 'elseif Predicate 'then Statement;
LoopingStatement := 'loop SetOrSequenceExpression ‘do Statement;
CommentStatement := 'comment AnythingButEnd + ‘end ‘comment ;

AnythingButEnd := LEXEME {> Al11B8utEnd;
ContinuationStatement := ‘'continuations 'of Statement
‘from 'which Expression
‘satisfies Predicate;

AttemptStatement := ‘'attempt Statement 1+ '; ;
ActionInvocation := Name '[{ Expression v ', } '];:
ChooseStatement := 'cicose Statement * '; 'end 'choose;
TogetherStatement := ‘together Statement * '; ‘'end ‘'together;

_NOTE 3 The extensions section;

TypeQualifier := BoundaryDefault | TypeEmbedding |
Equivalentform

BoundaryDefault := ’'bound BoundaryOp t ', 'by Boundary:
BoundaryOp := 'copy | 'destroy | ‘'restore | ‘contains | ‘'equiv |
'modify | ‘'all;
Boundary := BoundarySpecification | Name ;
TypeEmbedding := TypeConnector 'of '< TypeDeclarationBody * ': '> ;

TypeConnector := { CountSpec } Supertype | Subtype;
Subtype := ‘subtype;
Supertype := 'supertype;

EquivalentfForm := LinkClass;
RelationQualifier := KeySpecification | CoversSpecification |
RelationMappingProperty ;
KeySpecification := 'key KeyRoles;

KeyRoles := Role | '(ObjectExpression * ', ') .
CoversSpecification := 'covers Roles;
Roles := Role | '(Role * ', ') ;
TypeDeclarationBody := Name { '(AttributeSpec * ', ') }
{ TypeRelationQualifier + }
{ LocalDefinitions }
{ IndividualDefinition }
{ ConstrainingDeclarations } ;
RelationMappingProperty := ' onetoone | ' onto | 'reflexive |
‘transitive | 'symmetric | ‘antisymmetric |
'nonreflexive ;
NOTE 4 Expression language;

Expression := ObjectExpression
SetOrSequenceExpression := SetExpression | SequenceTerm ;
ObjectExpression := SelectedExpression | SetExpression |

SequenceExpression | ArithmeticExpression |
SharedExpression H

SharedExpression := SharedFactor
SharedFactor := SharedSecondary { ‘'asof Duration }
SharedSecondary := { OldConstant } SharedPrimar :
01dConstent := ‘old ;)
SharedPrimary := SharedPrimitive
{ Selectors } ;

T RS R T ST ST TR vmge—s e T e p———

Selectors := Selector -+ ;
Selector := AttributeRelationship AttributeName;
SharedPrimitive := FunctionCall | SpecialSymbol |
NestedObjectExpression | Variable

FunctionCall := Identifier '({ ObjectExpression ¢+ ', } ') ;
SpecialSymbol := ValueSelectedSymbol | WildCardSymbol |
ValueSelectedSymbol := '* ;
WildCardSymbol := '$;

NestedObjectExpression := '(ObjectExpression ') ;
Variable := RoleName ;

SelectedExpression := SequenceSelection | GeneratorSelection |
NondeterministicSelection | OptimalSelection ;
SequenceSelection := RandomSelection | FirstElement | LastElement

RendomSelection := SequenceTerm 'sub ArithmeticTerm ;
FirstElement := ‘first SequenceTerm;
LastElement := ‘'last SequenceTerm;
GeneratorSelection := GeneratorTerm LastWord ObjectExpression;
LastWord := ‘afterwards | 'lasttime ;
NondeterministicSelection := Determiner Role { '| Predicate } :
Determiner := 'a | 'an | ‘'any | 'one | 'the ;
Optimel1Selection OptimizingWord ObjectExpression 'wrt Order;

OptimizingWord := 'maximal | 'minimal ; .
NOTE Set expression subgrammar;

SetExpression := SetTerm |> RejectSharedExpression ;

SetTerm := Setfactor { DifferenceSetTerm } ;
DifferenceSetTerm := '- SetTerm ;

SetFactor := SetSecondary { UnionSetFactor }
UnionSetFactor := ‘union SetFactor ;

SetSecondary := SetPrimary { IntersectSetSecondary }
IntersectSetSecondary := 'intersect SetSecondary ;

SetPrimary := { Powerset } SetPrimitive
Powerset := ‘powerset ;

SetPrimitive := EnumeratedSet | SetRestriction | GeneratorTerm ;
EnumeratedSet := '{ ObjectExpression * ', '} ;
SetRestriction := '{ Role '| Predicate '} :

NOTE Sequence Expression subgrammar;

SequenceExpression := SequenceTerm |> RejectSharedExpression ;

SequenceTerm := Sequencefactor { ConcatenateSequenceTerm } ;
ConcatenateSequenceTerm := ' SeguenceTerm ;

Sequencefactor := SequenceSecondary { LimiterSequencefactor }
LimiterSequenceFactor := Limiter Sequencefactor;
Limiter := 'before | 'beyond ;

SequenceSecondary := EnumeratedSequence | String |
GeneratorTerm ;
EnumeratedSequence := '< ObjectExpression * ', '> ;
String := LEXEME |> CollectString;

T LD AR A B e e

1-6 GIST GRAMMAR

NOTE Generator expressions subgrammar;

GeneratorExpression := GeneratorTerm |> RejectSharedExpression ;
GeneratorTerm := Generatorfactor { TogetherGeneratorTerm }
TogetherGeneratorTerm := Together GeneratorTerm ;

Together := 'with | ‘cross ;
Generatorfactor := GeneratorSecondary { GeneratorSuffixes } ;
GeneratorSuffixes := GeneratorSuffix + ;
GeneratorSuffix := Predicatedfilter | Encodingfilter |

NamingFilter | SequenceTerminator |
Accumulation | Remainder | SubsequenceSelection ;
PredicatedFilter := SuchthatOrUnless Predicate;

SuchthatOrUnless := ‘'suchthat | 'unless ;

EncodingFilter := 'obtain ObjectExpression *+ ', ;

NamingFilter := 'named Variable { CommaVariable + ‘'respectively } :
CommaVariable := ', Variable

SequenceTerminator := TerminatorWord Predicate;
TerminatorWord := 'while | ‘until ;

Accumulation := { 'initially ObjectExpression }
'accumulate ObjectExpression# ;

Remainder := 'ungenerated | 'rest ;
SubsequenceSelection := DurationWord Predicate;

DurationWord := 'before | 'through | 'after | ‘beyond ;
GeneratorSecondary := PrimitiveGenerator | PrimitivePatternGenerator |
SharedExpression
PrimitiveGenerator := 'from ObjectExpression ‘by ObjectExpression#;

PrimitivePatternGenerator := SequenceTerminator ;

NOTE Arithmetic expression subgrammar;

ArithmeticExpression := ArithmeticTerm |> RejectSharedExpression ;
ArithmeticTerm := ArithmeticFactor { PlusArithmeticTerm } ;
PlusArithmeticTerm := PlusOp ArithmeticTerm;
PlusOp := '+ | '~

ArithmeticFactor := ArithmeticSecondary { MultiplyArithmeticFactor } ;
MultiplyArithmeticFactor := MuyltOp ArithmeticFactor ;

MultOp := 'x | '/ | 'div | 'mod ;
ArithmeticSecondary := { ArithmeticPrefixes } ArithmeticPrimary
ArithmeticPrefixes := ArithmeticPrefix + ;
ArithmeticPrefix := '+ | '~ | 'ceiling | ‘floor | ‘absolute ;
ArithmeticPrimary := ArithmeticPrimitive { ExponentArithmeticSecondarys } ;
ExponentArithmeticSecondarys := ExponentArithmeticSecondary + ;
ExponentArithmeticSecondary := '** ArithmeticSecondary ;
ArithmeticPrimitive := Integer | SharedExpression

NOTE Predicate expression subgrammar;

Predicate := QuantifiedlLogical | DurationPredicate | Logicallmp
QuantifiedLogical := { Not } QuantHead Predicate;
QuantHead := ExHead | UnivHead ;.
ExHead := { 'there } ‘'exists QuantifierRole * ', '|
UnivHead := { 'for } ‘a1l QuantifierRole + ', ':: ;
QuantifierRole := Role ;
DurationPredicate := { Not } AlwaysOrNever Predicate 'throughout Duration;

AlwaysOrNever := 'always | 'never ;

Logicallmp := LogicalTerm { 'implies Logicallmp }

LogicalTerm := Logicalfactor { OrlLogicalTerm } ;
OrLogicalTerm := Or LogicalTerm ;

LogicalFactor := LogicalSecondary { ‘'and LogicalFactor }
Or := 'or) ‘'xor ;

LogicalSecondary := { LogicalPrefixes } LogicalPrimary
LogicalPrefixes := LogicalPrefix + ;

LogicelPrefix Not | OldConstant ;
Not := ‘not | '~ ;
LogicalPrimary := Proposition { ‘asof Duration }

Proposition := LogicalConstant | InfixRelation |
) Relationship | NestedPredicate ;
LogicalConstant := 'TRUE | 'FALSE |} ‘true |} ‘'false ;
InfixRelation := ObjectExpression ComparisonSuffix ;
ComparisonSuffix := OrderingRelation | OptimizationRelation |
IdentityRelation | ContainmentRelation ;
OrderingRelation := { Immediately }
OrderingRelationConstant ObjectExpression
{ 'wrt Order } ;
Immediately := 'immediately ;
OrderingRelationConstant := "< { '> | 'tie ;
Order := Identifier ;
OptimizationRelation := Optimizes ObjectExpression
{ 'wrt Order }
Optimizes := 'minimizes | 'maximizes ;
Identity := '= ObjectExpression ;
Retlationship := functionCall ;
Containment := ContainmentName
(ObjectExpression | TypeExpression) ;
ContainmentName := ElementName | ProperSubSuperSet |
ProperSubSuperSequence

£lementName := ‘contains | 'in | 'isa | 'isan ;
ProperSubSuperSet := { Proper } SubOrSuperSet
ProperSubSuperSequence := { Proper } SubOrSuperSequence ;
SubOrSuperSet := 'subset | 'superset ;
Proper := 'proper
SubOrSuperSequence := 'subseguence | 'supersequence ;
NestedPredicate := '(Predicate ')
Duration := GeneratorTerm ;

]

Appendix i
GIST SPECIFICATIONS

Within this appendix:
comments to explain language features are surrounded by !!!

comments to explain modeling of the task are surrounded by ***

1.1 SOURCE DATA MAINTENANCE SPECIFICATION

H.1.1 *** Type definitions for objects of domain ***

type project(LIBRARY :any ::unigue , CLASSIFICATION)
bound contains by :LIBRARY

bound restore by = :CLASSIFICATION,
= LIBRARY ;

type library(FILE :any :ynigue)
bound containg, restore by = FILE ;

type file(UNIT :any ::unigue , PASSWORD :poptional)
bound contains by :UNIT
bound restore by = uniT,
= :PASSWORD ;

type unit(UNIT-CONTENTS | sequence of line , PROGRAMMER ,
UNIT-KEY | key :optional , SOURCE-LANGUAGE | language :gptiona!)
bound containg by :UNIT-CONTENTS

bound =, restore by = :UNIT-CONTENTS,
= :PROGRAMMER,

(UNIT.KEY,
'SOURCE-LANGUAGE ;

type line(CHARS | sequence of character , LINE-INCLUDES-UNIT | essence of unit :any)
bound restore by = :CHARS,
= LINE-INCLUDES-UNIT ;

type password(); type programmer(); type language();
type key(): type classification():

-

o

Py

e g

it-2 G!ST SPECIFICATIONS

fi.1.2 ** * Static constraints on the worid ***

*** These constrain the possible states of the world (without reference to changes in
the world, hence ‘static’).

alwavs reguired UNIT-LINE-LENGTH-CONSTRAINT
*** Alllines in units are of length Card-Length ***
Y line || MEMBER($:UNIT-CONTENTS $,/ine) = (length(/ine:CHARS) = Card-Length) ;

always prohibited

*** Aline may not occur more than once in the unit-contents sequence ***

3 unit, integer.1 , integer.2 ||
MEMBER (unit:UNIT-CONTENTS, integer.1,*) = MEMBER(unit:UNIT-CONTENTS,integer.2,*) ;

always prohibited

*** A line may not be shared between units ***

3unit.1, unit.2 ||
MEMBER (unit . 1:UNIT-CONTENTS , &, *) = MEMBER(unit.2:UNIT-CONTENTS , $, *):

*** Inctusion of units may not be 'circular’ - define a relation and derivations to mode!
inclusion between units ***

relation UNIT-INCLUDES-UNIT(includor | unit | included | unit) ;

cerivation DERIVE-UNIT-INCLUDES-UNIT(unit-a | unit , unit-b | unit)
*** |t alinein unit-a includes unit-b, derive that unit-a UNIT-INCLUDES-UNIT ynit-b ***
whenever 3 line [| MEMBER(unif-a:UNIT-CONTENTS.$,/ine) A (/ine:LINE-INCLUDES-UNIT = unit-b)
conclude UNIT-INCLUDES-UNIT(unit-2,unit-b) ;

derivation DERIVE-TRANS-CLOSURE-UNIT-INCLUDES-UNIT(unit-a | unit , unit-c | unit)
*** Form transitive closure of UNIT-INCLUDES-UNIT =***

whenever 3 unit-b | unit {|
UNIT-INCLUDES-UNIT(unit-a,unit-b) A UNIT-INCLUDES-UNIT{unit-b,unit-c)

conclude UNIT-INCLUDES-UNIT(unit-a,unit-c) ;

= Now prohibit any circular UNIT-INCLUDES-UNIT ***
always prohibited 3 unit || UNIT-INCLUDES-UNIT (unit,unit) ;

-3

11.1.3**"* Usercommands **°

*** We have chosen to model user commands as a sequence of objects through which
the system iterates (an alternative would have been to expect the worid to invoke the
appropriate action for each user command).

*** file-spec is introduced 10 connect a file reference with a password ***
type file-spec(FILE, PASSWORD :Qptional) ;

*** Definitions are indented to display the type hierarchy of the commands ***

type command() supertype of
< update-command ; copy-file-command ; backup-command ; restore-command >;

type update-command(CURRENT.FILE-SPEC | file-spec,
UPDATE-SUB-COMMANDS | sequence of update-sub-command) ;

type update-sub-command(CURRENT-UNIT | essence of unit. UNIT-KEY | key :optipnal) supertype ot
< add-command ; purge-command ; replace-command ;
copy-unit-command ; change-command >,

type add-command(DaTA | sequence of line, SOURCE-LANGUAGE | language :gptional) ;
type purge-command();

tyoe replace-command(DATA | sequence of line) ;

type copy-unit-command(FROMUNIT | essence of unit, FRom-FILE-SPEC | file-spec :optional) ;
type change-command(CHANGE-SUB-COMMANDS | sequence of change-sub-command);
type temporary-change-command subtype of { change-command > ;

tyde change-sub-command() supertype of

Cinsert-command : delete-command ; shift-command:
modify-command , copy-lines-command ; replace-line-command > |

type

tvpe

GIST SPECIFICATIONS

insert-command(paTa | sequence of line, SEQUENCE-LOCATION :gptional) ;
delete-command(LiNeS | essence of sequence of line) ;
shift-command(LINES | essence of sequence of line, COLUMNS | integer) ;

modify-command(LINES | essence of sequence of line,
NEW-STRING | sequence of character,
STARTING-COLUMN | integer :gptional,
OLD-STRING | sequence of character :gptipnal) ;

copy-lines-command(FROMUNIT | essence of unit,
LINES | essence of sequence of line,
SEQUENCE-L.OCATION, FROM-FILE-SPEC | file-spec :gptipnal) ;

replace-line-command(OLDLINE | essence of line, NEWLINE] line) ;
copy-file-command(T0-FILE-SPEC | file-spec, FROM-FILE-SPEC | file-spec) ;

backup-command(0BJECT | essence of project U library U file);

restore-command(BACKUP-STATE | state ,
OBJECT | gssence of project U library U file U unit) ;

«** Note that some of the names of the above commands, and the actions that are to
periorm them, do not correspond to the user command names given in the English
specification. These changes are intended to clarify the action of the named commands.
COPY has become COPY-LINES
MOVE has become COPY-UNIT
MERGE has become COPY-FILE
Whereas previously providing sequenced numbered data lines in a CHANGE command
implicitly caused insertion or reptacement of lines, now these changes are achieved by
giving explicit commands INSERT and REPLACE-LINE.

s

11.L1.4 *** Dynamic constraints on the world ***

always prohibited INCLUDED-UNIT-DELETION
*** A unit may not be deleted if it is included anywhere ***
3 dead-unit | essence of unit ||
gestroved csad-unit A UNIT-INCLUDES-UN!T($,dead-unit) ;

always reguired UNIT-KEY-CHECKING

*** May not make changes to a keyed unit without having provided the correct
key in the current command, except when performing RESTORE or
RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE. ***

{ 3 changed-unit | essence of unit ||

(destroved(unit) V modified(vnit)) A old { 3 key = unit:UNIT-KEY }) A
~ (RESTORE{$] V RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE[$]) =
3 commaend, event ||

active event A (parameterof(event) = command) /A command:UNIT-KEY = key ;

always reguired PASSWORD-CHECKING
*** May not access any part of a password-protectec file without having provided
the correct password in the file-spec, except when performing RESTORE or
RESTORE-UNITS.- TEMPORARILY-CHANGED-SINCE, ***
(3 file || access(tile) A\ 3 password || password = file:PASSWORD) A
~ (RESTORE[S] V RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE[$]) =

I commeand, event, file-spec ||

active event A (parameterof(event) = command) A command gontaing file-spec A
(file-spec:FILE = fi'e) A\ (lile-spec.PASSWORD = password),

-5

-6 GIST SPECIFICATIONS

i1.1.5 *** Interface with user ***
demon USER-INTERFACE({commands)

friager *** Place here user activity to provide commands and initiate processing ***
response SOURCE-DATA-MAINTENANCE(commands);

11.1.6 *** Actions to perform commands **"*

11.1.6.1 *** SOURCE-DATA-MAINTENANCE ***
action SOURCE-DATA-MAINTENANCE[commands | sequenge of command]
definition ;
Qver commands named com

do attempt
case com of

update-command => UPDATE[com];
copy-file-command => COPY-FILE[com);
backup-command => BACKUP[com];

restore-command => RESTORE[com)];

end case ;

-7

11.1.6.2 *** UPDATE ***

action UPDATE[update-command]
et fite = updete-command:CURRENT-FILE-SPEC:FILE
detinition
over update-command.UPDATE-SUB-COMMANDS named up-com
do begin
require 3 current-unit | essence of unit || current-unit = up-com:CURRENT-UNIT;
attempt
gase up-com of

add-command => ADD{current-unit file,up-com];
purge-command => PURGE[current-unit];

replace-command => REPLACE][current-unit,tile,up-com);
copy-unit-command => COPY-UNIT[current-unit file,up-com];
change-command => CHANGE[currenr-unit,up-com];

end case
end;

1.1.6.3 “** ADD ***

action ADD(unit | essence of unit, file, add-commeand]
definition
begin
atomic
create unit, copy-of-lines | seguence of line ||
copy-of-lines = add-command.DaTA A
UNILIUNIT-CONTENTS = copy-of-lines;
insent file:UNIT = unit
end atomic;
it Ikey || key = add-ccmmeand:UNIT-KEY then insert unit:UNIT-KEY = key
end;

1.1.6.4°*°*°PURGE ***

action PURGE([unit)
definition destroy unit ;

0.1.6.5°"° REPLACE"**"*

action REPLACE([unit | essence of unit, file, replace-command)
let data | sequence of line = replace-command:.DATA
definition *** if referenced unit aiready exists, replace its contents,
otherwise create a new unit. ***
if Junit
then begin
greate new-lines | sequence ot line || new-iines = data;
update :UNIT-CONTENTS of unit {Q new-lines
end
eise begin
greate add-command || add-command.DATA = data;
ADD]{unit.file,add-command)

end,

1.1.6.6 *** COPY-UNIT ***

action COPY-UNIT[unit | gssence of unit, file, copy-unit-command)
definition :
atomic
create unit || unit = from-unit,
ingert file:UNiT = unit
g_ggajgmig :

GIST SPECIFICATIONS

n-9

11.1.6.7 *** CHANGE *°**

action CHANGE[unit,change-command)

definition
gver change-command:CHANGE-SUB-COMMANDS named ch-com
do attempt
case ch-com of

insert-command => INSERT[unit,ch-com};
delete-command => DELETE([unit.ch-com];
shift-command => SHIFT[ch-com];

modify-command => MODIFY|[ch-com];
copy-lines-command => COPY-LINES[unit,ch-com];
replace-line.command => REPLACE-LINE[unit,ch-com];

end case:

11.1.6.8 *** INSERT ***

+ When inserting lines into a unit, we may either explicitly say where the insertion is to
take place. or by default let the lines be inserted after the last position of change to that
unit (during the cur-ent CHANGE command), or at the start of the unit if there has been no
such change.

To find the last position of change we define two relations. LATEST-STATE-OF-
CHANGE((unit,state) relates a unit to the latest state (since starting execution of CHANGE)
at which the unit contents then differ from the unit contents now. LATEST-POSITION-OF-
CHANGE relates the unit to the position of this change.

relation LATEST-STATE-OF-CHANGE(UNIT , CHANGESTATE | state)
gefinition
changestate = latest some state || unit:UNIT-CONTENTS ~= (unit:UNIT-CONTENTS as of state) A
state after latest start CHANGE(unit,$] ;

110 GIST SPECIFICATIONS

relation LATEST-POSITION-OF-CHANGE(unit , sequence-location)
3 changestate | state, longest-same-bottom | sequence of line ||
longest-same-bottom = longest some same-bottom geguence pf line ||
LATEST-STATE-OF-CHANGE (unit,changestate) A\
UNIT:UNIT-CONTENTS = $ @ sequence-location @ same-botiom A
(unit:UNIT-CONTENTS as of changestate) = $ @ sequence-location @ same-bortom

action INSERT([unit, insert-command]
let gata = insert-command:DATA
definition
if 3 sequence-location || sequence-location = insert-command:SEQUENCE-LOCATION
then POSITIONED-INSERT[unit,czta,sequence-location)
else UNPOSITIONED-INSERT[unit,data] ;

action POSITIONED-INSERT[uni1, data | sequence of line, sequence-location)
precondition 3 10pseq | seqguence of line, bottomseq | sequence of line ||
" unit:UNIT-CONTENTS = topseq @ sequence-location @ bottomseq
definition
begin
create new-lines | sequence of line || new-lines = data;
update :UNIT-CONTENTS of unit {0 topseq @ new-lines @ bottomseq
end .

action UNPOSITIONED-INSERT[unit,datz | sequence of line]
definition
create new-lines | sequence of line: || new-lines = data;
update :UNIT-CONTENTS of unit
to lif 310pseq | sequence of line, bottomseq | sequence of line, sequence-locetion ||
LATEST-POSITION-OF-CHANGE(unit,sequence-iocation} A
UNit:UNIT-CONTENTS = topseq @ sequence-location @ bottomseq
then topseq @ new-lines @ bottomseq
else *** if unit as yet unchanged, insert at front ***
new-lines @ unit:UNIT-CONTENTS
)
end;

N —

11.1.6.9*** DELETE ***

action DELETE[unit, delete-command

precondition 3 startseq | sequence of line, endseq lmug_c.eni line ||
UNITUNIT-CONTENTS = startseq @ delete-command:LINES @ endseq

gdefinition
update :UNIT-CONTENTS of unit 1Q startseq @ endseq

(.1.6.10 *** SHIFT ***

action SHIFT{shift-command])
detinition
Qver shift-command:LINES pamed /ine
do ypdate :.CHARS of /ine to

some newchars gsequence of character||
ISSHIFTED(newchars,chars,shift-command:.columns) ;

relation ISSHIFTED(NEWCHARS | seguence of character,
OLDCHARS | sequence of character, COLUMNS-TO-SHIFT | integer)

definition
3 olo-left-blenks | gequence of ' *, old-right-blanks | gequence of " ",

new-left-blanks | gequence of " "', new-right-blanks | seguence of " *,

non-blanks | sequence of character ||

~MEMBER(non-blanks ,$," ") A
oldchars = old-lefi-blanks @ non-dlanks @ old-right-blanks A

newchars = new-left-blanks @ non-blanks @ new-right-blanks A
length(new-left-blanks) - length(o/d-left-blanks) = columns-to-shift ;

**ve.g. <"A","8","C"," ", " "> may be shifted by 2 columns to give

< LU I TR} "Au an \lC ") or
<« LA LTBT L YCT L, or
< e o , " n \ nAn . uBll . llCu , "o , " " > etC-

i-11

TN T &

12 GIST SPECIFICATIONS

11.1.6.11 *** MODIFY ***

action MODIFY[modify-command]
let lines | sequence of line = modify-command:LINES
let new-string | sequence of character = modify-commanc:NEW-STRING
deliniion
begin
if 3 starting-column | integer || starting-column = modify-command:STARTING-COLUMN
then over lines named /ine do MODIFY-BY-COLUMNY//ine starting-column,new-string];

if 3 old-string | sequence of‘character || o/d-string = modify-command:OLD-STRING
then over lines named /ine go MODIFY-BY-REPLACEMENT [/ine,old-string,new-string)
end ;

action MODIFY-BY-COLUMNY//ine, starting-column | integer, new-string | sequence of character]
definition
ybdate :CHARS of /ine
to (from 1 by +1 while<starting-column named i

obtain MEMBER(/ine.CHARS,,*)) @

new-string @

(from starting-column + length(new-string) + 1hy +1 while =<length(/ine:CHARS)
named i pbtain MEMBER(/ine:CHARS.i,*)) |

action MODIFY-BY-REPLACEMENT [line, old-string | seguence of character,
new-string | sequence of character)
delinition
if line:CHARS = $ @ old-string @ $
then ypdate :CHARS of iine
to some newchars | sequence of character|]
newchars @ $ =
REPLACE-ALL-INSTANCES (chars.old-string ,new-string) @

some blank-seq | sequence of * ™

tunction
REPLACE-ALL-INSTANCES(chars | seqguence of character, o/d-string | seguenge of character,
new-string | sequence of character)
if 3 lefrichars | sequence of character, rightchars | sequence of character ||
chars = leftchars @ old-string @ rightchars
then REPLACE-ALL-INSTANCES (lefichars,old-string,new-string) @ new-string @
REPLACE-ALL-INSTANCES (rightchars,ofd-string,new-string)

else chars ;

H-13

11.1.6.12 *** COPY-LINES ***

action COPY-LINES[unit,copy-lines-command)
let lines | sequence of line = copy-lines-command:LINES
precondition copy-lines-command:FROMUNIT:UNIT-CONTENTS = $ @ lines @ $
gdefinition
begin
require 3 steriseq | sequence of line, endseq | seguence of fine |}

Unit:UNIT-CONTENTS = stariseq @ sequence-location @ endseq;
create new-lines | sequence of line || new-lines = lines;

update :UNIT-CONTENTS Of unit {g startseq @ (new-lines) @ endseg
end;

1.L1.6.13 *** REPLACE-LINE ***

action REPLACE-LINE[unit, replace-line-command]
precondition MEMBER (unit:UNIT-CONTENTS $,replace-line-command:OLDLINE)
definition)
update :UNIT-CONTENTS of unit
10 (unit:UNIT-CONTENTS named /ine
obtain (if tine = oldline then newline glge line)) ;

1.1.6.14 *** COPY-FILE***

action COPY-FILE[copy-tile-command)
let file = copy-file-command:TO-FILE-SPEC.FILE
let from-file | tile = copy-tile-command:FROM-FILE-SPEC:FILE

94
gefinition
over from-file:UNIT pamed from-unit
¢o atomic
create new-unit | unit || new-unit = from-unit,

ingert file:UNIT = new-unit
end atomic ;

-

-14 GIST SPECIFICATIONS

11.1.6.15 *** BACKUP and RESTORE "**

action BACKUP[backup-command];

»*» Simply activating BACKUP with its parameter sutfices to serve as an event that we
may later refer to in a RESTORE command.

action RESTORE[restore-command]
let obj | essence of project U library U file U unit = restore-command:0BJECT

precondition *** A backup must have been performed at the time specified in the restore
command and the object being restored must have been the object (or part
of the object) backed up at that time. ***
3 backup-command || restore-command:BACKUP-STATE = stant BACKUP[backup-command} A
{ backup-command:0OBJECT contains obj) as of restore-command:BACKUP-STATE

definition
restore obj as of restore-command:BACKUP-STATE;

*** Note that because RESTORE commands refer only to times at which BACKUP
commands were executed, the implementor need only aliow for restoration to such points
in time rather than to arbitrary points during the past execution.

H.1.7 *** Restoration following temporary changes ***

gemon TRIGGER-TEMPORARY-RESTORATION (event)
*** Atend of job, trigger restoration of units temporarily changed during job ***

trigger ~ SOURCE-DATA-MAINTENANCE[S)
response RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE[
latest start SOURCE-DATA-MAINTENANCE[S) ;

f relation TEMPORARY-CHANGE-BEGAN(unit,state)
. definition
3tc-com |temporary-change-command || stat CHANGE[unit,tc-com] = state

action RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE[s state]
*** Action to do restoration of all temporarily changed units to the state they
were in prior to their first temporary change since state s ***
definition
over state named s7 when s7 = earliest some state {f sfate after s A
(3 unit || TEMPORARY-CHANGE-BEGAN(unit,state))
do restore unit gs of s7;

always required PRESERVE-ABILITY-TO-RESTORE-TEMPORARILY-CHANGED-UNITS

*** When executing SOURCE-DATA-MAINTENANCE, must always be able to restore
temporarily changed units so that the actual restoration occurring at the end of the job will
nct be anomalous.

LA J

SOURCE-DATA-MAINTENANCE($] =
admissible RESTORE-UNITS-TEMPORARILY-CHANGED-SINCE]
latest start SOURCE-DATA-MAINTENANCE(S]

,__,.,,.-A

N
;
j
|

016 GIST SPECIFICATIONS

11.1.8 *** Maintenance of information about units ***

*** According to the English specification many items of information about units are to
be kept within the unit accounting record. Using the specification language we are able to
derive such information rather than explicitly assigning it to the units as they are created.

! To demonstrate how this is possible, we retain two such pieces of information associated
3 with units, programmer and source-language, and show how these may be derived.

’rs e

derivation DERIVE-UNIT-PROGRAMMER(unit)
whenever 3 programmer || programmer = (PROGRAMMER($) as of create unit)
conclude unit:PROGRAMMER = programmer ,

*** PROGRAMMER(S) is assumed to be a unary relation provided by the operating
environment returning the programmer submitting the current job.

LA N J

derivation DERIVE-UNIT-SOURCE-LANGUAGE (unit)
whenever 3 ianguage ||
(3 add-command || add-command:SOURCE-LANGUAGE = Janguage)
as of latest start ADD[unit,$,add-command)
conclude unit:SOURCE-LANGUAGE = language .

W17

11.2 HOST-IMP SPECIFICATION

HOST IMP PROTOCOL specified in Gist

Contents:

Genegral features of host-imp world
Nodes
Hardware failure

Specialization to hosts and imps
Interface with external world
Hosts
Imps

*** Objects of type item are transmitted between nodes. Relation CONNECTED indicates
which nodes are connected for transmission.

tvoe
item (MESSAGE ,ADDRESS | node):

relation CONNECTED (NODE ,NODE) ;

alwzys prohibit SELF-CONNECTEDNESS
3 ncoe || CONNECTED (node node);

+ Nodes are agents which perform transmissions. Hosts ang imps will be specializations of
these. Nodes have several groups of items or messages associated with them:
PENDING - items yet to be dealt with by the node
TO-BE-SENT - items 10 be sent elsewhere
MY.MESSAGES - messages from items addressed to the node

.18 GIST SPECIFICATIONS

agent node(PENDING :any | item ,
TO-BE-SENT :any | item , MY-MESSAGES :any | message) with

100
TRANSMIT[item,to | node]
recondition CONNECTED(*gelf*,.to)
**+ Within context of definition of agent,
ff* used to refer to that agent. °***
s Tnvoking TRANSMIT serves as an observable event,
so0 this action needs no body ***;.

pending-demon RECEIVE(item, event)

*se yatch for transmissions to this node. ***
trigger started-event(event) A event = TRANSMIT (item, ®seli*)

response
begin
wait until (finished-event(event) V aborted-event(event)):
if finished-event(event) s*s { e, transmitter remained OK *°**
then insert item into *sell*:PENDING

end;

pending-demon PROCESS-PENDING (item)
rigger item = ®*Self*:PENDING
response
begin
delete *se/f*:PENDING = item;
if item:ADDRESS = *gself*
then insert *self*:MY.-MESSAGES = item:MESSAGE,
else insert *se/f*:TO-BE-SENT = item
end;

action
ACTIVATE[] *** This action is invoked when the agent is activated ***
gefipition

begin
delete all *self* TOBESENT=$;
delete all *se/f*:PENDING = §;
wait Relay-Set Tme.
end
end agent

oy

-18

agent hardware failure wi;h'

*** Node hardware failure is modelled by the following demons, which at random deactivate
and reactivate nodes.

s e

demon NODE-HARDWARE-FAILURE
trigger random
response deactivate(some node);

demon NODE-HARDWARE-RECOQVERY (node)
trigger random A Tlactive(node)
response activate(node)

end agent:

sTx=sssszzzss=z==xs Specia]ization to host-imp wWOorld s=z==sz===xc=zsxczzc %%

*** Hosts and imps are specializations of nodes. Messages specialize to user-messages.
acknowledgments (of user messages, when they reach the imp connected to the destination

host), and host-going-down-messages (which a host sends 1o its imp to indicate it is being turned
off).

agent node superagentof < host , imp > end agent

lvpe message supertypeof < user-message ;
acknowledgments (ACKNOWLEDGES | item) ;
host-dead-acknowledgments (ACKNOWLEDGES | item)
host-going-down-message > ;

always prohibit DIRECT-HOST-CONNECTIONS
3 host.1, host.2 || CONNECTED(host.1,host.2) ;

**°* We model the user interface and possible interactions on our host-imp world by detining
two demons, USER-SEND to create and send a user-message to some host, and USER-TURN-
OFF-HOST to turn off a host.

i-20 GIST SPECIFICATIONS

agent interface with

demon USER-SEND
trigger random
response
begin
gcreate user-message, item ||
item:MESSAGE = user-message,
item: ADDRESS = some host;
insert (some host):TO-BE-SENT = jtem
end;

demon USER-TURN-OFF-HOST
lrigger random
response
begin
require 3 host;
create host-going-down-message, item ||
item: MESSAGE = host-going-down-message,
item : ADDRESS = hos!:CONNECTED-IMP;
insert host:TO-BE-SENT = jtem
end

end agent

*** Hosts, being subagents of nodes, inherit nodes definitions; in addition they have the
following:

LR N

agent host{CONNECTED-IMP | imp) with

always reguire V host imp ||
host : CONNECTED-iIMP=imp i=> CONNECTED (host,imp)
"¢=> CONNECTED (imp,host)

pending-demon SEND (item)
trigger item = *gelf*:TO-BE-SENT
response TRANSMIT[item , *se/f*:CONNECTED-IMP]

end agent

Ih-21

*** Imps, being subagents of nodes, inherit nodes definitions; in addition they have the
following:

T

agent imp(DEAD-HOSTS :any | host) with

**+ Attribute :DEAD-HOSTS used to record which of the connected hosts are considered to be
“dead"” by the imp.

*** One event which causes an imp to mark a connected host as "deaa"” is receipt of a host-
going-down-message. ***

demon MARK-HOST-DEAD (host, host-going-down-message)
trigger host:CONNECTED-IMP = *gelf* A
(host-going-down-message: : MESSAGE = ®gel{*:PENDING A
greator-of host-going-down-message = host) V
Jagtive(host))
response insert *se/f*:DEAD.-HOSTS = host,

*** Successful receipt of a message from a connected host (other than a host-going-down:
message) will cause the host to be removed from those marked as dead. ***

pending-demon UNMARK-HOST-DEAD (host, item)
trigger (item:MESSAGE isa host-going-down-message) A item = ®gelf*:PENDING A
host = agent-of(latest TRANSMIT(item , *seif*))
response delete ®*self*:DEAD.HOSTS = host; :

pending-gdemon SEND(item)
trigge item = “self*:70-.BE-SENT
response
begin
delete *self*:TO.-BE-SENT = item;
if CONNECTED(*geif* , item:ADDRESS)
then if item:ADDRESS isa host
then if item:ADDRESS 1= :DEAD-HOSTS
then begin
TRANSMIT[item ,itemn : ADDRESS] ;
if item:MESSAGE isa user-message
then ACKNOWLEDGE-OK[item]
end
else if item:MESSAGE isg user-message
then ACKNOWLEDGE-DEAD{[item]:
else TRANSMIT[item,item: ADDRESS]

else TRANSMIT[item, $]
ees Send item onwards through network. ®***

GIST SPECIFICATIONS

pending-gemon RECEIVE(item, event)

*** Specialize definition of receive for imps to terminate wait for a message if more than 15
seconds have passed since start of receipt. *°*

trigger started-event(event) A event = TRANSMIT (item,node)
resnecre
Eenin
wait until (finished-event(event) V aborted-event(event) V
duration(event) > 15 seconds):
if finished-event(event) then insert *self*:PENDING = jtem

end;

pending-demon PROCESS-MY-MESSAGES (message)
trigger message = *self*:MY-MESSAGES
response delete *sel/f*:MY.MESSAGES = message;
*** Imps simply discard messages addressed to themselves. ®***

action ACKNOWLEDGE-OK[item]
definition
begin
rea acknowledgments, reply | item
|| acknowledgments: ACKNOWLEDGES = item,
reply : MESSAGE = acknowl/edgments,
reply: ADDRESS = creator-of(item);
insert reply into ®self*:TO-BE-SENT
end;

action
ACKNOWLEDGE-DEAD[item]
begin
create host-dead-acknowliedgments, reply
|| host-dead-acknowledgments: ACKNOWLEDGES = ilem,
reply : MESSAGE hosi-dead-acknowledgmerits,
reply: ADDRESS creator-of(item);
insert *self*:TO.-BE-SENT = reply
end;

demon CONNECTED-HOST-GONE-DOWN (hos!)
+ What to do when a connected host goes down, *
tricger hosi:CONNECTED. IMP = *gself* A Tactive(host)
response DEADIFY[host)
end demon

i e oo e .

R

il-23

action
DEADIFY [host]
definition
begin
1 a
unscheduyle all [SEND({item) || item:ADDRESS = host]
end:

1 *self*:TO-BE-SENT =(some item || item:ADDRESS = host);

:
[_.

demon TARDY-SEND-QUEUES (item,host)
*** What to do if send queue not emptied rapidly enough. ®***
trigger item:ADDRESS = host /A host:CONNECTED-IMP = ®gelf* A
duration(jtem = *seif*:TO-BE-SENT) > 30 seconds
response DEADIFY[host]:
end agent

1.3 FORMATTER SPECIFICATION

‘qutssod | yipim

‘1evorirdo: abed-suibag-01

‘wnusjeu | Burdedsaduly

‘qut+sod | yjBuegsabed

‘wnusjeu | vibBaewszybra

‘wnusjeyu | uibaewsyjajsiuvanbasgns
‘wnuaieu | utbaewadyag

! ‘Jdeyd? jo ajuanbas | a(111+J2100}
‘aeyd jo adzuanbas | ajjrLisvepeay)uorrewsogur adhy

L 1UdWWOd pud

*sauL| patjrisnl ojut paiernundoe

9q 03 aJe pue ‘sydedabeaed ur andoo Aey) ‘uoLjewIOjuL noke|
yitm Jayi1aboy (saeyo jo aduanbas awoS) pJom B ULEIUOD SPIOMOJUL JuUBUMOD
} t(anbrun:: uorjewloyur | ojutami ‘aeys Jo 3duanbas | sJeyd+mL)pJoms0guL adhq

. tjuawwod pua
*(J915eJ2Yd BUL{Japun pue ajsedsyoeq "6°a) bBuriurad 8yl burop
] 87LA8p BOLSAyd ay3 01 ejerddosdde Buryiawos 8dxnpousd 01}
3ndino ay} pue ‘paurLlJIapun ag o} sJajdeaeyd sretsydousdde sy
Ky1ssepo 03 andul ayj - yaom Aue op paau sasejualut ayy Apup

*20K1QNS SLY} JO 2Je PauL[JOpuUn 3Q 03 SJIBYD (T IBY)} DSWNSSe M IUDUANOD

¢ ¢ ()deys > go adLiqgas ()aeysspautidspun adky

t(y@1ovaeyd)aeys adhy

t(Jeys jo asuanbas | sueys)auiy adfi

‘JUBWNCD pU3d)
‘papJedsip aq o1 aJse Aaul
ases yoLym ut ‘abed e jo doy K4eA ayl e Janddo pinom Kayl
ssafun *3ndano a8yl ut saulf ue|q se afuawa 01 ase a8sayy JuUaWWOD
‘(uorjewaojur | ojurad)auy|-buipped adhq

tjuswwod pue -saul} paijrisnl ojul paje nundde 8q 03 SPJOM;0juL urejuod sydeabesed Jusuwod
‘(pJomsojut jo ajuanbas | spsomad)uydesbesed adhy

tquewwod pua ‘uorlewaojul Inokey snid ‘3x83 WLIBQJAA ULRIUOGD SBUL[-0JUL JUBUANOD
*(anbrun :: uvorlewsojur | ojulspl * anbrun:: auil | autst)auisojut adky

t9UBWWOD pud S8 ¥Lw JO 3duanbas B S1 I4911PWIO) Jno 03 INdUI JUBHABOD
¢ ¢ ()ourysbuipped :()ydesbesed :()autisojur > jo adhisadns ()r1ayxiw adky

11-24

{3uawwod pua SIdAL UaUMIO D
utbaq

o e

11-25

- -pus

pud (p ¢ juLa+sod) pasinbay sAemie asaym ¢ ()uabajur > jo adhirasdns ()iutasod adhy
tpua (1- ¢ wnusieu) pastnbay sAempe aaaym ¢ ()dabajur » go adhfiuadns (Junuaieu 3dfn

‘1uawwod pu?d
‘abed uibaq e asned jou Aew piom 3SJty ayyl puofag ydeabeaed e o Spaomaojul U0 d
t(paomsojur*(y ¢ u |} JabajuL | u awos) ydesbesed)saquaw pue ¢ - abedautbagsol:puomsojut |1
PIOMOJUL SISLX3 BJBY]L
39Yd-+N1938+01+Q80M-HdVEIVHYd-YINNT Paltqiyosd skemie

t{(4abajur | anieasainiosqe)ainjosqesue adky
t(v9bajuL | anieasjuswaddul)juswasdursue adky
t ¢ ()ainposqesue :{)juewasdulsue > jo adAysadns ()abedsuirbagso0y adhy

‘y1piLmsquanbasqns cuoitewsogut - utbuewsyybru:uoriewsogurl = yipimsjuanbasgns:uorLyewsoul
pue urbBuewsijap:uoriewsoyul - utbiewsiybrazuoriewiojul = yYIpLm:uoOLjRWIOJUL
voL3lULyap

yipimsjuanbasqns:
‘YIpLm:

‘abedsuy B6ags0y:
*Gursedssaut(:
‘y3buaysabed:
*utbaewsyybra:
‘utbsewsy o »1uanbasqns:
‘urBaewsyya:
‘2131114481004
‘a1t1-J9peay: = £q aLnba punoq

(1uir+sod | yiptmsijuanbasqns

- pua

(191xtw jo @aduanbes | siyapixiw
‘3@18uL| jO 2duanbas | s3218uUt |)SIIIXIN-WOHI+S1ITINIT1-QILYIY) UOLIBLDY

. t{ Butpped } uotitutgep ()Burpped adky
t((burLpped uotun surl) | autys(‘enbrun :: uorjewsojut | ojpursg)raiaur| adky

‘(191 ¥1w jo @adcuanbas | aunixrw)indurssiajxiw adky

‘pua
[(eunixtw:3ndui+$318)x1w’ 4)S1IIXIW-WOHI+SIITINIT+AILVIYD INOTIVNIOVA
{juBwwod puad

*1NdiN0-39vYd uoLlead
ojuL pajsasut 3q o} (sabed bBuijuasaudas) saur(jo

asuanbas jo adjuanbas e asned ((iMm ydrym ‘uvorjewsoy abed op moN uswwod

*[eunixiw:indut->s313 X LW]S I IIXIW-WOUI+S13TINT 123 LV IY)
‘juawwod puad
:adfq1 ejep
Joalduis e OjuL asay} ajepL|osuod 01 sL de1s Ixau a8yl oS
‘andurLssialxiw uy uirewdad saul isburpped pue saur|aqxol
LLuo *31nsaJ e sy ‘s)yueyq Buipea| 01 saniea utbuew
1421 bBuyjuaauod pue Burpped o3 sumopasdeds Burjsaauod
‘saul| yjbuajuano jo Buriirds ‘bBurpped-aut(-Jajut
‘Hurydedabeged ‘bBursajusd op 031 suowsp aabbruy L tm siLyyg JU3UWO D
ts1apwtw = adnyxrw:indurssiapxiw || andutasiaixiw ajeadd
uiLbaq
uoLjLuLyap
[(1a1xtw jo adsuanbas | sia(xiw]ivwHQo4 uvorld®
uibaq

-

o Etwy = ey

- pua
(381¥1w'3813UL)13 IXIN-WOMI+1I1INIT uoL3E(ad

‘puas
{ s191x1w
*o(rapxiw) 13X IW-NHOM 49 13TINTY
ULEIQO 1BIXLW paweu S13LXLW)S1IIXIW-WOU4->SIITINIT+AILVIHD 143SUL

tased pua
pua
(39 1x1w 1913uL | } 1 IIXIN-WOH 4+131INT) FJ@SuL
‘Buipped = aut(ag:iagauty
pue ojuisd:iqaxiw = ojutag:iajaut| [[19L8uL aieaud
utbaq ¢=
aut{+butpped
‘pud
(191xtw 122Ut 1) 1IININ-HOH I2131INT) Fu3sSut
tAUL LYYW = Bul{s(:13(3uUL(
PUB OjUL>]L:713|XLW = ojuls(:3d1autl [| 1913uL| @3eaud
utbaq ¢=
autL»0jut

JO0 18 (xLw 3ses op
ja{wxiw pawey sya{xtw dooy
urbaq
uoLyturyap
[1e1x1w jo edouanbas | s1aixiw JSEIININ-WOHI+SLITINI T+ILVIYD =o_uumm
vibag

e i s .

.

Amwmmem¢mmmnvh=¢h=o¢u¢<m 498U}

tquawwod pua
sabed jo Jaquwnu ayjl asLwiuiw 03 st Kem ® YINS UL DAOQE 8yl 0F IUBUAOD

tyjbual 1Jm saarjeuddie saziwirurw AyL(rgqrssod saiysiies sabewrssbed yoLym wouy
pua
((s188uL+abed
‘o) IIVWI-I9¥d+0I1VIYD) ULRIQO s3aiaut|+3bed paweu vorytjsedsabed) - sebewrsabed ||
auiL| jo ajuanbas yo aduenbas | sabewisebed sisixe ssayy asiLnbay
t[s1a0uL [+86ed]39VNI+319Vd+31VIYD Op
s18|aul |sabed paweu voijiiaedsabed doot
t1uamuod pua
*uolltlsed ayy ut sialautl jo
asuanbas yoea Joy (auL| j0 8dsuanbes) ebewrsabed ayy wiojy Juawwod
t(s19tauL*uotitiaed+abed)NOILILIYVd+39Vd ||
181aul| Jo ajuanbas jo aousnbas | uoritisedsabed sisitxa asayl adsinbay
‘qudwWwod pud Siajaull J0 volitised Auesrrque BwWOS pulj JuAUWOD
uibag
JO suoLjenutjuod
bt uifaq
A uotytutljep
— [1819uty jo aduanbas | siaraut| INOILVNIDVd uotlde

uiLbaq

—ye—

11-29

Lo el

afedauibags0y:0jurad: (o (1 C v 1] gabaru

40 3818UL} 1SJL§ 8Y} SB JNIJ0 sobed uiboq 03 siagaury 1i®

pue ‘siajauLl Jo uoritiued ® st It J4i

(1ataut| jo @duenbas | s3iay
‘q9ayduL| jo asuanbas jo ajuanbas | uoLlL1y

- pua
JuUBUW0d pud
‘gouanbas a8yl
N0 st uoririsedsabed 3uauwod
| u awos) *gyaaul |+abed)aaquew 10U (=
(s18(eut (+abed ¢ uotitisedsabed)saquen 1
181aut] jo ajuanbas | si1aisuiy+abed (e)
pue (sidjauly = (uptitiaedsabedjuariey)
uoLyLuL 3ap
aut |
vdsabed)NOTLT1YVd+39Vd uolie|add
uifaq

e .!.)x»i,rr.“ HH aithinioctude e

11-30

- -pua

(aury jo aduanbas | saut|)31L11+031VIYD vorIeLadJd

¢ (1aLauty Jo asusnbas | syataul |»abed ‘auiy jo0 aduanbas _ saul |)IDVYWI-+I9vd-»QILVIYY uorieladd

‘pua
(sjaieur|+abed * Burijooy g Jojued § Burpeey)3IgvWI-+39Vd-+Q3ILVIHD IJesul
ty16ua|sabed:uorjewsojutsabed = (burjooy g vajuad Burpeay)yibuay asrnbay

‘(6uipped jo asuanbas | sbuipped awos)
. @ (aviia1:19198
ui+abed uielqo 1ayaul|+abed paweu siaiauti-sabed’,)INTQAYd-INITIVY1+ONV-ONIAYI1+dIYIS .
= Jajuad ||
(6utpped uotun aury) jo aduenbas | J48juad sIsLxd 3sayl aJinbay

Bur3004 || aury jo aduanbas | Buirjooy sisLxa asayy ssinbau
H | w_u@a+gwuoouucowumEgoh=_¢mmma tgaqunusabed 137111-31V3IND

t(«)37111-031VIHD

Burpeay || auiy jo edsuanbas | Buipesy sistxa adayl aJtnbay
‘[al1ti-Jepeay:uoLiewsojutsabed ‘gaqunusabed J37111-31vIYD

$(«)37111-031V3IY¥D

‘(uoritiyedsabed ‘siagautsabed ‘saqunusabed)y3gunn-+3ovd ||
Jabajut | Jaqunus,abed sisLxd asayl adsinbau
uvibaq
uorjtuLjep
ojuLad:(s18 auL (»abed)isary = voryewsojur | uorjewJsoyursabed 181
[1atauL(jo @duanbas jo ajuanbas | uwotitised-abed

‘qataut| jo aduanbas | sia|aul|+abed]I9YWI-+»IOVd+ILVIYD uoLID®
uibaq

11-31

*Tpua
pua
juawwod pue
‘1 st (8bed BuLpasausd ou aaey ()Lm yorym) abed
1sJt1) Asaa ayy Joy Jaqunu abed 1ynegap 8yl snuyj UL

‘g as|8
(uorirysedsabed siataut |+abedsbutpadsaud .)yIBGWNN-+I9Vd u3dUY
(¢ & < siataur|+abedsburpasaud > 3§ ¢ = uoritisedsabed) ||
jaiaut] J0 ajuanbas | sialauLisabedabuipasasd sisLxa audyl Jt
utbaq
uoLyLuL jap

(19taut| jo aouanbas jo adjuanbas | worirjsedsabed
‘1a{aut| j0 aduanbas | sya|asut|-abed
‘aabajur | saqunusabedsbuipadsaad)YIGWNN-+IOVL-ONIGIDIYd uoLIEad

‘pud
Juawwod pua
‘yaqunu abed fuipadsesd ayy + [A(dwts ‘astmsayio !uaqunu abed
BuiLpaosaad sy3 j0 juswaudur 3eYy SL Jaqunu ay} ‘aniea abedsuitbagso0l
{e1uswaddut ue sey It yt :afied ayy jo Jaqwnu 3yl St 1Yl Uayl
‘anyea abedsui1bags01 ainiosqe ue sey abed ayyl jo 3aduLy ISJLy Byl JI IUdWWOD
‘(uotitlsedsabed siajaut (+abed’ o)Y ITWNN-IIVI-+INIGIIIUd + | = Jaqunuabed asye
angeasjuauwayout :ebedsuibags01 +
(uotqiijJedsabed’siagaut [+abed’,)y IgUNN-IOVd+ONIAIIIYd Jaqunusabed as|a
anieasajinjosqe:abedsurbags0y = saqunusabed uayl
. ainjosqesue est abedsuybeqgs01 J1 uayl
abedsu1Bag-01 = abedsuibags0i:ojurat:(siaraursabed)asary || abedsuibagsoy sisitxe ausyyl i
uibaq
UoOLYLuL 4ap

(18{aut| jo asuanbas jo ajsuanbas | uoriLisedsabed
*3a(aut| jo aduanbas | sjaiauL(-+abed
‘gebajur | uaqunusabed YYIGWNN-IOVY4 uoLI®(3J
uiBaq

P

11-32

e,

- pus
Buipped esit (sauty)isey jou
pue Obutpped est (sauiLi)isdiy jou
pue ((Buipped jo aouenbas | sbuippedsisod awos)

@ Saul[-840D
® (6uipped jo aduanbas | bBuippedsasd swos) - seur|)
((burpped uorun suL|) jo @duanbas | saui]

uo1jtuLap
‘(6uipped uvorun aur|) jo 8Juanbas | sauL (42400)INIQAQVI-INITIVH1-ONV-INIQYIT+dIYIS UOLIR(BY

utbaq

11-33

‘pua
((ase2 pus
auL|s[:1818uUL| (= suy |
1 ¢ > <= Burpped
JOo 1918ul| B8sed) uireirgo
1dlaul| paweu s38(dUL]) = saul|
uotLiLut jap
((Burpped uorun aut|) jo asuanbas | syajaury
‘aut| o aduanbas | sautl)SIITINIT-WOY4-SINIT uoLie(ay
utbaq

. -ﬂcw

(48bajut | Joqunu ‘seyd jo 8duanbas | SJ8IILIRYD)YIGWNN-YOI+SHILIVEVHI-OIiVIND voLie(al

‘pue
seul1+91313 01 ($)37111-031V3y) vl sdurt ajepdn
¢ ((uyiprmsabed = ((4'u'saut-313t3)d3aWIn)yibuay
¢= ((sauL-+a[1L31)1se] = duL| 20U pue (But|‘$'sauL|+a1313)y3awIn)) || sutL 11e goy))
pue (yiptmsabed < ((sautisafiti)iset)yibuag jou)
pue (((¢ Jeys> > as|a
(vaqunusabed’ 4)4 IGWNN-Y04-+SYILIVHVHI-CGILVIYD uaul
(JeY2)y IVUVHI->YIAWAN->TOYd JL)
ULe1Q0 JBYD pawey Bul|-d131))ualleyy = (saury-aliri)usliely)
11 2u1y jo sdusnbas | sauL|+81211 SISLX® 2a8yy dainbay
[J4equnusabed JYIGWNN-Y0I+SYILIVUVHI-ILVIYD
utbaq
uot1LuLap

[auiy | autisalaty *J4abajut | daqunusabed JSINTI+31LT11-+31VIYD uoLId®
uibaq

11-34

¥

11-35

- *pua

(ydeuabeued
‘eut|+0juL Jo 8duanbas | seul|spatjiLiIsnl)HdVYIVUVI-HO4+SINIT+04INI-QITSTISAC+QTLVIYD uotie(ad

‘pua
2°s319|1xtw
® (ydesbeued’ .)HdvHOVYVd-HOI+SINIT+0INI-AITIILISNC+AILVIHD
: ® 1°s19|¥tw 03
Indurss$391XLW JO aunixrw: 3jepdn

‘[ydesbesed IHdvHOVYVA-HO I-SINI1POINT-QIT T ISNCILVYIYD
fqudauwod pua

- *sauri+0juL (parjtisnl) jo asuanbas

e 0jluL ydeabBeaed 3yl JO SpIOMsOSUL BYY} JJBAUO) JUBWWOD
uLbaq asuodsay
2 s1a1xiw @ ¢ ydeaBesed > @ y-s19i¥iw = symxiw:indutasiapxiw ||
j91¥1w jo a~uanbas | z-si1axiw ‘1aixiw jo asuanbas | (-siaxiw ‘ydeabeoed sisixa asayl sabbray
(andut+s18 X LW)INTHIVYIVHYL UOwap
utbaq

o0 v

e

..u:u
(psomsojur 3o aduanbas | SpJoOm ‘BUL|+0jul)SAUOM-HOI-+INIT-0INT-0ILVIY)
uoLie|ed

‘pud
(ydesbeaed saut)+pats11snl)HAVHOVEYL-HOI-+SINI 1504NT-QIT4T1SNC+0TLYIYD Td8SUL

‘Juauwwod pua
*pasnposd sauL|-»0juL

10 Jaqunu a8yl aziwiutw 0} SB Aem P _YdNS ul BAOQP 3yl Oog JuUdWWOD

ty1buay 1um saarjeudalje seziwtuiw A3 Lqrssod satysties saur(spargrisni yorym wouy

pua
((aury
+8U0-+03ut+06501+Spaom) SAHOM-+HO>INT 1504NT+0I1VIYD ULRIQO
8UL|1+2U0+03UL3006401Spuom paweu uvoritisedaspaom) = sautapargrasnfl ||
auL|s0juL jo aduanbas | saur|sparyrLisnl sisLxd asayy aJdunbay
‘pua
[(uvorirjsedsspsom)ise|l JSQUOM-+HOI+INIT-0INI-QIT 41 LSNCNN+ILYIHD
$3UdWWOD puad
uotyest jrisnl 1noyitm sui| 1sey eyl (|t} ALduts Juswwod
:[8u11+8U0+07U1506+01+5pIOM]SAYOM-HO 4+INT 120INT0ITAIISNCTIVIYD OP
UL (+9U0+03UL+00503+spaom paweu uoritivedsspuomsisela3nga1ie doo|
utbaq vayl
uoLjL1Jed+SpJom = ¢ ¢ > @ uoLitigedaspaomsise|singapie ||
pJom jo adjuanbas j0 asuanbas | uUOLILIJRASPIOMITISEINGs| 1R SISLX3 8J4BYT JL
‘juswwod pua
auL|-0jut parsLyisnl e wuyoy ‘3sey ayj 31dedoxs spaomsojul jo aduanbas yoses 4oy JuswWOD
¢ spaomad:ydedsbesed = (uorLitysedssprom)usiaeyy
|| pJomsojuL jo aosuanbas jo aduanbas | uoritidedsspyom S3ISLXd 8dayl aJinbay
13UaWWOoI pud
spaomsojut s,ydedbeued ayy jo uvoritirued Aseujrgue ue Ydi4 Juawwod
uibagq
JO SuoL}BNULIUOD
© ui baq
@ uotLjLuL jap
= [ydesbesedJHdvyOVEYd+Y0I+SINI T+0INI-QITITLSNC+ILVIYD
uotLioe
uirbaq

o e s —— = R A R i oy LN i v

11-37

“-pua
(ptomsojur jo dduanbas | spuom ‘BuL()SQUOM-YO4-INIT+03T14T11SNC+0ILVIY) uvorieyay

tpua
(Spaom*auL 104Ul)SOUOM->H0+>INIT0INT+0ILVIYD FJBSUL
tojuLamL: (SPUOM)ISILY = OjUt+{L:IBULL+0JUL
pue (spaom‘,)SQYOM->HOI-+INIT-AITITLSNE-QILYIND
= dutps)lL:aut]sojul }| aurisojuL 31e3JID

‘{spyom]sayom-¥04-INI12QITHILISNC2TIVIND
urLbaq asya

pusa
(spyom‘auL |+0}uL JSAYOM-+HO4-»INI T+04NT~@ILYIYD JdasuL
tojulami:{sSpaom)isaLy = OjuLajliauLs0}uL
pue saeydsmi:(Spsom)isaLy = autls(L:aultsojut || aurtsogut a3esad
{1UdWWOd pual
‘sul| 8yl 1tids o1 (Indurasialxiw 3yl O0jul RJeq PaLISuUL SI
aul |s04ur ay} uaym) paJsabbral aq [Lim vowsp @3eviadoadde
ay1 ‘aut{-sojut yibuarusac ue 61 astd 3aLh Syl pinoys
"auUL|+0juUL ur O3ul 13t ¥213s Kiduts - paom auvo A{ugQ Juauwod
uvibag vayl
1 = (spJom)yrbua 4t
uoLILutL jap
[paomsojur jo aduanbas | spuomJSOHOM-YOI-INIIS0INISO3TITISNACTIYIND cc_auam
uiLbag

L

e

11-38

..u:o
(psom 3o @duanbas | spiom “BuL1-03UL JINTI1+04NI-GI0AVd-ATTHVHITEYY uoLIe3d

tpud
Amvgoz.wcw—¢oh:wVmazoz¢mOu+qu4¢cuHm~hm:ﬁ¢au~<uzu jJasulL

uaoc_pap_"wcmpso&cwvcamcv— = YIPLM:IOJuULs|L:3UL[0)UL aJinbay
T1udiwod pud
‘t1e Jaise Aseujrgue oS 231nb 7,usem Burpped Asesirque J4no snyy -
(parsrasnl -a-t) yibuay ybrs ayy jo aq aurl au3y eWy astnbay juawwod
(spJom‘aul | 04Ul)INIT+03NT-C30AAVd->ATTHYH LTI BYY I
auL|-0jut SISLXd dJBN aJLnbad
{[spsomISHNYTE-H LI M+SAUOMQYd+ATIHVY L 1YY
uibeq
:O.p.:c.numv
{piomsojul jo @duanbas | spIomICOHOM-HO I+ INT 1+QITITLISAT+IEVIND =c_~umm
uibaq

- pus
({jueq uvoLun psoms0jut) jo ajuanbas | sam)basayueigspoomn adky

1
‘pud
(spJom*autL 1+0uL)INTT1+04NI-0IAAVd-ATIYYHIIAYY FJ8SUL

t((ased pua

¢ Q-+J0aM > (= JEeYyd
{SIRYI:Q4J04m (= pJUOM
J0 Qs404m ased)

uLeiqo
q+J05m pawey SgM:basHRUBRIg-pPJOM)UdIIBLY = BUL[a|L: 38Ul |+0)UL
pue ojut-mi:(Spuom)isdLy = Ojulaft:auLfs0jutl || eutrs0jul areadd

‘¢ § ¢ Z2°PJOMsOJUL ‘T PIOMsDJUL > § § = sam:bas,syuelgspiom ||
Z2°DJOM50OJUL ‘T PIOMSO)UL $ISLY3 3J3Y3 10U aainbay
L 3UdWWod pud *uLeWAJ SPJOm pajesedasun ou eyl dJuLnbay JudwWWOD

‘[basayue|g+pIom]SUNYIGHLIIM-HOTYIINI-QVd
‘qusuuod pua :bBurpped (Asesli1Que) BWOS OP IXIN TUBUWWOD

tSpJOM = Sgm:bassyue(qapsom || bassyueiqapiom 3je84d
uiBaq
uoLytuL jap
[paom jo aduanbas | SPIomISUNYTIGH | IM>SAUOMAYA-ATTHVY L T AYY :o_uumm
uibaq

11-40

- pua
asooys pua
juawwod pua -Buipped suow ou Oop 01 3SO00YI JO IUAWWOD

‘pud
[aouanbassyue | q>pIom]SHNYIG-HLIM->YOTYIINT+QVd
1Z2°Sam § (NUB1QamAU > P 1°Sqm
01 adjuanbasayueqspJsom JOo sqm: ajepdn
‘juelg = Jajoedeyd:iyue|gsmav || geyds | Jue|gemau a1eaJd
t Z2°saQm @ T1°Sgm = sgm:asuanbasayueigspaom ||
(due g votun paom) jo asusnbas | z sqgm
*(due|q uotun paom) 40 adsuanbas | [-sgm s1Si1x3.a8da8yl aJsinbas uiLbaq
asooy?s
uotitLutjap
[8ouanbassyue 1 q+pIom]SHNYI8-HL IM+HOTHIINI+AVd =o_uu~m
uibaq

e i

11-41

}
tTpud
L pua
(SPJOM‘aUL |+0 UL }SAYOM-HO4+INIT+0INT-AILVIHI jJ08ut
tyrbua Jum saAtieudal e soztwLuLWw K1LpLgissod saLjsties UL L+LL:BUL]0JUL YILUM WoJ}
pua
yIpLm:ojutstLiautLa0jut < Aw=w~¢—m"o=w~+ou=_v:um=o~ 10u 8uaLnbas
tquawwod pud yibuaLaanro aq 0u aut| 8yl 1eyl aJLnbay Juswwold
uAmugo;.wc_,¢oh=wvqu4¢0qu+ouc=<u¢>4~¢<=-m=< I
aulL|+0jul SIsStxa dJ8Yl aJLnbaJy
¢ [SpJOMm]SHNYTE-H1TM+SAYOM-CQYd-+ATTHVE 118UV
uibagq
J0 suoLienutiuod
utbaq
uoLItuL}ap
[psom jo aduanbas | SPJOA JSQYOM-YO 4+INT 1+0INI-QITJ I LSNCNN-TLVIY) uoLjoe
utbaq

i T, -

11-42

e ——— .

--pua
(surLgs0jut | auL{sbuoy
‘aul{-0jut jo aduanbas | sautis3t1ds)INIT-HIONITUIAO-HUOS+SININ+LINdSQTILYIYD voLleLal
‘tpus
2 S1axtw
8 (auL 104Ut o }INIT-HIINTTHIAO-YOI+SINI1-111dS»0I1YIYD
9 U'siaixiw 03
IndurssiapxLw Jo aunixiw: ajepdn
[surs04ur JINIT-HLIONITHIAO-YO4+SINI T LI 1dS+TLVIYD
‘juawwod pua
-y3buay aiqeidasde jo
saut{ ojuL 1ti1ds ag 01 st aurl yibuaysasao Auy IU3WWOD
urbaq
asuodsay

(auL [»0JUL)INIT+0INI-HIINITYIAO
puB 2 S1alXlw @ < BULLa04UL > @ [Si1a|xLw
= aJnixrw:indutssiapxiw ||
jaixiw jo @djuanbas | z2-si1a|xLuw
‘19|¥tw jo 3duanbas | [-siIatxiw ‘aut(-0jul $1S1¥3 asayl +abBruq
(Indutossiapxtw)SINIT-HLIONITIIAO-L11dS =o5muo
uirbaq

11-43

(Butps04ur ‘(T 8uULL-0JUL BUL(04UL))INT THIINITHIAOYO04-SINI T+111dS»AT1VIYD IJasuL

{dLwole pud
[ojutame:z-autisogur JO4INI-3IZILININDISANS
‘UOLIBWIOJUL = OJUL3]|L:Z°BUL]a0juUL
pue Z'8UL| = Bul|+l1:Z aul|-04uL
pPUB OjulsML:BUL|+0juL ALNDD uoLjewdojur || z-aurLp+0juL ‘votlewWiojut 31RBJID
JLwole
fjUBwwWod pua
‘gaputewad ayy jo urbuew 3381 ayy isnlfpe o1 pue
‘awes ayl op [Lim 1L1ds ay3} Ag pawsoy auL| 3IsJL} 8yl Apuo °‘abed
e 14e1s 0% sem aurl eurbrLyo ayy JL jeyy aunsua o031 yjoq
‘.paziriuanbasqgns, si auiLy puodas ayy ojur ob o1 uorLiewuojuL a8yjy JUaWWo?d

i

t]*euL| 03 auL|+0jut jo auLp-+|L: 3jepdn
‘yiptmiauL s t:aul 1s0gut = (T-aut)yibuay

pue z-autl § Y auLl = duL|s(L:aut|soyut ||
2°8uL| ‘r-aulL] SISLX3 8Jyay}y aJinbay

*(uo os pue ‘3L jo jL1ds e

asnes (|Lm uowap 3yl uayl ‘yi1buaiusao [|L1S SL J3pulewdd

8yl jir) yibuay arqerdasde jo st aur| IsJly ayl asns bButyew
‘saul|s0jul om3 03Ul 3t 3iL(ds os ‘yibualuano st autys0jut ayjy sULTHILE]

uiLbaq

pus

- pue

uoLytuL 3ap
[aut(s0jut JINIT+HIONITHIAO+¥O4+SINI1+111dS+31VI¥] uo11o®

uitBagq

- pua

pua
¢ = abedsucbaqso0j:uotiewaojut (e 9laiaep
tuiLbaewsyjal+3uanbasqns:uoLewaojuL 03 uoLjewdojut jo.utbuewsryag: airepdn
uibaq
uotjtut yap
[vorrewsoyur JO4NI-IZTLININOISANS uoLIDE
uirbaq

11-45

S Tpua

(J83oedeys jo aduanbas | ssq)aduanbas.yueiq adky
‘pus
J2Lwo3e pud .
BUL[»|L:8UL{»0jULl § S+Q:3d2uanbassyue|q 03 3UL[+0juUl JO duLl-|L: diepdn

‘0 01 Ojurspt:auLtsojut yo utbuewsirgal: ajupdn
JLwole

tutbaewsyjap:ojuLapL:aut |s04uL = (ssq:ajuanbassyueiqg)yibua| ausinbay
t[8ousnbas+yueg]IININDISHANVIA-ONILX]

t¢ > = sq:asuanbassyue|q |] ajuanbassjur|q 31340

uucwEEOuucm

*aq peau j1 paJsajuad pue (yibuarsaao st L j1) 3LLds
uaaq Sey BUL{-0juUL 8yl 3J0}aq 3uop aq 10U ||Lm SLUl
"syue|q jo saqunu ajeirusdoadde ayl yitm urbag 03

eyl 910N
paisnlpe ase saniea utboewsyya| cusdz-uou yjLm Saut[-+0jut uauwod
vibaq
asuodsau

(sut|+0jut)a3y3INII~>I8-01 30U
pue (8uL|+04uL)INIT+0INI-HIONITHIAQ 10U
pue 0 < utbBuewsyja(iojuLaL:BUL0)UL
pue Z°'S1alXLW § ¢ BUL|-40jUL > g T°SIdLXLW = aanixtw:indutssiaxtw ||
19| xLw }jo aduanbas | z-siaixiw
‘13|xtw jo ajuanbas | [-siaixiw ‘aduri-sojul SISiLxe 8sayl Jabbrug

(anduLssiagxiw)ONIQAVJ+NI9YVYW-+1437 uowap
utbaq

11-46

‘‘pua

asooyds pua
U0
tpua
[edouenbasayueq J3oNINDISINVIE-ANILXT
:$+q:a3uanbassyue{q § <JBYI) 01 8luanbassyue(q Jo $+q: aiepdn

‘juerg = Jajoedeyds:Jeyd || Jeyd ajraud
utbaq
asooyo

uoLitul jep
[eduanbassyueiq J3ININDIS+NNVIL+ONILXI uoL3d®

utBaq

JUBWWOD pua ‘Jaylsny Aue pualxa 01 10U 8SOOYI 4O

11-47

- pus
pua
JLwole pua
(g asta
((Butiait:8ut{+0jut)yrBual ~ YIpImiojurst:vuLis0guL) ey usyy
(2U11+03U1)INTT-04NI-HIONITUIAD F0U 41) 03
OjulsL:auL|+0)ut jo urbiewsyjap: ojepdn
$(QuL1+0)UL)AIYIINII+IG+0L 918L3p
JLwoq e
$juduwwod pud
*suiboew vaamiag x93 jo bGuraajuad 198349 01 JapJo
ut anjea uibaew 133 ayy 03 sjuawisnlpe sasned uowap sty uawnod
. ; uibaq
asuodsalu
(v 1+03U1)02431NII»38-01
1

pue Z°Siapxtw
. 8 ¢ auLla0jutL >
8 U°si1axtw = asnyxtw:indupasiaixiw ||
S qalxtw J0 3djuanbas [z-sireLxiw
‘qayxiw jo 83uanbas | rrsialxiw

‘aul {+0juL S3si1xa 3sayy J3b661u1

(yndutasiagpxiw YONTHILNTD uowap
: utbagq

v -, I D> i O .o

- “pua

pus
2°s18|xtw § Sat-sd:aduanbassaut |+butpped § ¢ auty+0juL > P [siaLxLw 03
InduissiaxLw 0 aunixtw: ajepdn

tsaut |+Burppedsjos0u = (saysd:asuenbassaut+burpped)yrbuat aztnbas

*[ojursmau ‘aduanbas-auti-burpped]3IN3IN0IS>INIT-+INIAGVA-+ANILX3
t¢ > = Sal+d:aouanbassaut+burpped || aduenbassauts6uiLpped ajeasd

‘JLwole pua
[ojutamau JoiNI-3IZI1ININOISEANS
‘0jULsLL:auUL 40Ul Atnba ojutsmau || vorjewsojur | ojuLamau djeasd
. JLwo}e
} ‘juBwwod pud
‘0os op 03 st Buimoyloy aue Aeyil aurl 8yl
asnedsaq a|duts abed mau e BurLjuelrs wayy juem 1, uop
am - uotjewsoyur ,pazriuanbasgns, Kpajerudousdde
jiLJeyul sauli+buLpped mau ayl asnsua 01 aJued ajye| Juauwwod

‘0 01 Ojutstt:aurLlsojur $o bBuroedssaur(: ajepdn
‘Buroedsssut:ojutaqt:out|+03uL = saut-butppedsjosou ||
Jobajur | sauirsbBurppedsjo-ou s1sLxa asayy asinbay

‘jusuwwod pua
"A|lajes pawdojrad aq Aew Gurpped yorym uaije ‘uowasp
ajededas ® Aq saul| (eJaads ojuL 1tids aq [|Ltm BuULL ®©
ysns asnesaq st styy - aut| yibuajuano ue saj3ge pappe
aq 07 j0u st Burpped jey) 930N “°Saul| Ix31 uaaImlaq
Buioeds ayy op o} sauti-sbuipped sajeaus uowap siyj JU3WWOD
uibaq
asuodsay
(aut+04ul)INIT-0INI-HIINITYIAO 30U
pue o ¢ Buroedssaut|:ojuta|L:8uUL 404Ul
pue 2°S1a|XlW § ¢ AUL[40juL > @ T°SIaLXtw = sidyxiw:Indurssiapxtw ||
auL|a04ul
‘1o xtw jo ajuanbas | z'sjaxtw
‘qaxtw jo aduanbas | 1°s1a|xiw sIStxd agayy Jabbray
(induissiaixiw)ONTQQVd+INI 1-4FINT uowap
utbaq

11-48

11-49

- “pus

asooys pus
JuUBdWWOD pud ‘JayjlJany Aue pualxe 03 JOU BSOOYD JO JUBUMIOD
‘puad
[Adoo+03s0juL ‘asuanbassaut-Buipped]3ININOIS+INIT+INIOAAVI-+ONILX]
‘sayad:a5uanbasaaul (+butpped @ ¢ autabuipped > 03
ajuanbassaut |a6uipped jo ss1+d: ajepdn

‘uoLjewdoyur = ojutadeaut+6utpped
pue £d05-01+0juL Arnba vorjewsoyut || autisBurpped ‘uorjewsojur ajeadsd
uiLbaq

asooyd
uotLjtuL jap

[votiewsojut | Adods-03-0jut
‘aui|-Buipped jo asuanbas | aduanbas-saut|»burpped]3ININDIS-+INIT+INIOOYI-ONILXI uOLIO®
uibaq

REFERENCES

1. Balzer, R., Transformational Implementation: An Example, USC/information Sciences institute,
RR-79-79, 1979.

2. Kernighan, B. W., and P. J. Plauger, Software Tools, Addison-Wesley, 1976.
3. Teitelman, W, Interlisp Reference Manual, Xerox Palo Alto Research Center, October 1978.

4. Tinanoff, N., and F. M. Luppino, Programming Support Library (PSL) Program Specifications, ,
Technical Report RADC-TR-74-300-v0:-6, November 1974. (Structured Programming Series,
Volume VI, AD-ADDO7 796.) -

5. Wile, D.S., POPART: Producer of parsers and related tools, 1981. (in preparation).

X

SRR

N dy
Tar

MISSION
of
Rome Air Development Center

RADC plans and executes nesearch, development, test and
selected acquisition programs 4in suppornt of Command, Contrnol
Communications and Intelligence (C31) activities. Technical
and engineerning suppont within aneas of technical competence
48 provided to ESD Program Offices {POs) and othen ESD
elements.. The principal technical mission areas are
communications, electromagnetic guidance and contnol, sunr-
veillance 04§ ground and aerospace objiects, intelligence data
collection and handling, information system technology,
Lonosphernic propagation, solid state sciences, microwave
physdics and electronic neliability, maintainability and
compatibility.

